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Abstract

Background: Exposure to ambient fine particulate matter (PM2.5) correlates with abnormal glucose homeostasis,
but the underlying biological mechanism has not been fully understood. The gut microbiota is an emerging crucial
player in the homeostatic regulation of glucose metabolism. Few studies have investigated its role in the PM2.5

exposure-induced abnormalities in glucose homeostasis.

Methods: C57Bl/6J mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) for 12 months
using a versatile aerosol concentration enrichment system (VACES) that was modified for long-term whole-body
exposures. Their glucose homeostasis and gut microbiota were examined and analysed by correlation and
mediation analysis.

Results: Intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT) showed that CAP exposure
markedly impaired their glucose and insulin tolerance. Faecal microbiota analysis demonstrated that the
impairment in glucose homeostasis was coincided with decreased faecal bacterial ACE and Chao-1 estimators (the
indexes of community richness), while there was no significant change in all faecal fungal alpha diversity estimators.
The Pearson’s correlation analyses showed that the bacterial richness estimators were correlated with glucose and
insulin tolerance, and the mediation analyses displayed a significant mediation of CAP exposure-induced glucose
intolerance by the alteration in the bacterial Chao-1 estimator. LEfSe analyses revealed 24 bacterial and 21 fungal
taxa differential between CAP- and FA-exposed animals. Of these, 14 and 20 bacterial taxa were correlated with
IPGTT AUC and ITT AUC, respectively, and 5 fungal taxa were correlated with abnormalities in glucose metabolism.

Conclusions: Chronic exposure to PM2.5 causes gut dysbiosis and may subsequently contribute to the
development of abnormalities in glucose metabolism.
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Background
Diabetes is one of the leading causes of death globally
[1]. In addition to genetic risk variants and behavioural/
environmental factors, the gut microbiota is emerging as an
important contributor to the pathogenesis of abnormal glu-
cose homeostasis. The interest in the role of gut microbiota
in the host’s metabolic homeostasis has been sparked by

the observation that germ-free mice have reduced adiposity
and improved tolerance to glucose and insulin [2], and are
protected from diet-induced obesity and abnormal glucose
homeostasis when fed a Western-style diet [3, 4]. The
following focused studies have then indicated that the
gut microbiota is crucial in the pathogenesis of human
diabetes [5]. The biological mechanisms for the role of
the gut microbiota in diabetes has also been investi-
gated. The gut microbiota has been shown to influence
the host’s capacity of energy harvest and thus impact
the development of obesity that is the leading risk
factor for diabetes [5]. Furthermore, additional studies

* Correspondence: yanyi_xu@fudan.edu.cn; yingzhekang@hotmail.com
†Equal contributors
1Department of Environmental Health, School of Public Health, Fudan
University, 130 Dong’an Rd, Shanghai 200032, China
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Wang et al. Particle and Fibre Toxicology  (2018) 15:17 
https://doi.org/10.1186/s12989-018-0252-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12989-018-0252-6&domain=pdf
mailto:yanyi_xu@fudan.edu.cn
mailto:yingzhekang@hotmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


have demonstrated that changes in the composition and
function of gut microbiota are associated with abnormal
glucose homeostasis, independent of other contributing
factors such as body weight [6]. For example, type 2 diabetes
(T2D) is associated with decreased gut butyrate-producing
bacteria and/or increased gut opportunistic pathogens [7],
and increased lipopolysaccharide and/or branched-chain
amino acid (BCAA) biosynthesis potential of gut microbiota
at least partly accounts for the insulin resistance in
apparently healthy individuals [8]. Moreover, the high
fiber diet-associated amelioration in insulin resistance
and hyperglycaemia is correlated with its probiotic
function, and dietary supplementation with probiotics
or symbiotic improves insulin resistance in diabetic
patients [6]. These studies collectively indicate that the
gut microbiota plays a crucial role in the pathogenesis
of diabetes.
Fine particulate matter (PM2.5) pollution is one of the

leading environmental factors affecting global public
health. Numerous epidemiological studies have dem-
onstrated that exposure to PM2.5 is associated with an
increased risk of diabetes [9, 10], however, the underlying
biological mechanisms have not been fully understood.
Notably, recent studies showed that oral ingestion of
inhalable particulate matter (PM10), ultrafine particulate
matter (PM0.1), or chemicals present in ambient PM2.5 is
sufficient to alter mouse gut microbiota [11–14] which
could result in abnormal glucose metabolism. Although
ingestion is not the primary route of exposure for ambient
PM2.5 ambient particles that are inhaled and subsequently
cleaned by the mucociliary escalator from the airway. Fur-
ther studies are needed to determine whether inhalation
exposure to ambient PM2.5 alters gut microbiota and
subsequently causes abnormal glucose homeostasis. To
this end, we exposed male C57Bl/6 J mice to concentrated
ambient PM2.5 (CAP) or filtered air (FA) for 12 months,
and analysed their glucose homeostasis and gut micro-
biota. The results demonstrate that chronic exposure to
CAP significantly decreased the richness and composition
of the faecal bacterial but not the fungal community.
Furthermore, some of these alterations were significantly
associated with abnormalities in glucose metabolism.

Methods
Animals and whole-body inhalation exposure to
concentrated ambient PM2.5 (CAP)
3-week-old male C57Bl/6 J mice were purchased from
the Animal Center of Shanghai Medical School, Fudan
University (Shanghai, China). After 1-week acclimation,
mice were subjected to exposure to FA (n = 10) or CAP
(n = 10) using a versatile aerosol concentration enrich-
ment system (VACES) that was modified for long-term
whole-body exposures as previously described [15, 16].
The VACES was located on the campus of School of

Public Health, Fudan University (130 Dong’an Road,
Xuhui, Shanghai, China). The exposures were performed
from March 2016 to March 2017. The exposure protocol
comprised exposures for 8 h/day, 6 days/week (no exposure
on Sunday). Ambient PM2.5 and CAP were collected weekly
throughout the whole duration of exposure, and their elem-
ental composition was determined by inductively coupled
plasma mass spectroscopy (ICP-MS) for trace element
analysis as previously described [17, 18]. During the period
of exposure, mice were kept on a 12-h light/dark cycle
at room temperature (20–25 °C) and 40–70% relative
humidity, and received water and standard food ad lib.
All procedures in the present study were approved by the
institutional animal care and use committees of Fudan
University, and all the animals were treated humanely and
with regard for alleviation of suffering.

Intraperitoneal glucose tolerance test (IPGTT)
After 46-week-exposure to FA/CAP, mice were subjected
to IPGTT on that Sunday. Before testing, mice (50 weeks
old) were fasted (initiated immediately after the Saturday’s
exposure) for 16 h. On the day of experiments, the basal
glucose level of tail vein blood was determined using an
automatic glucometer (Glucotrend 2, Roche Diagnostics),
and then mice were intraperitoneally injected with glucose
(2 g/kg body weight). The glucose levels of the tail vein
blood at 15, 30, 60, and 120 min after injection was
measured as described above.

Insulin tolerance test (ITT)
ITT was performed on mice after the 47-week-exposure
to FA/CAP on that Sunday. Before testing, mice (51 weeks
old) were fasted for 4 h. The basal glucose level of tail vein
blood was determined using an automatic glucometer
(Glucotrend 2, Roche Diagnostics) and then mice were
intraperitoneally injected with insulin (0.5 U/kg body
weight). The glucose levels of the tail vein blood at 15,
30, 60, and 120 min after injection was measured as
described above.

Faecal sample collection
After 48-week-exposure to FA/CAP, mice (52 weeks old)
were immediately transferred to empty autoclaved
metabolism cage (individually housed, no bedding), and
allowed to defecate normally. The 24-h faecal pellets of
each mouse were collected and stored in empty auto-
claved 1.5 ml Eppendorf tubes using a sterile toothpick.
The faecal samples were immediately placed on dry ice
and then transferred to − 80 °C freezer. Samples were
stored at − 80 °C until ready to extract DNA.

DNA extraction and sequencing
The total genomic DNAs of the faecal samples were
extracted using a MoBio PowerFecal DNA extraction kit
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(Qiagen) as per the manufacturer’s instructions. Briefly,
the samples were homogenized in a 2 ml bead beating
tube containing garnet beads. The lysis of host cells and
microbial cells was facilitated by both mechanical colli-
sions between beads and chemical disruption of cell
membranes, ensuring efficient extraction from even the
toughest microorganisms. The total genomic DNA was
captured on a silica spin column and then eluted with
50 μl of elution buffer from the column after washing with
washing buffer. These genomic DNA samples were stored
at − 80 °C until the preparation of sequencing libraries. To
prepare the sequencing libraries, the DNA concentration
and quality was determined with a NanoDrop 1000 spec-
trophotometer (Thermo Scientific) and by agarose gel
electrophoresis (1% wt/vol agarose in tris-acetate-EDTA
buffer), respectively. One sample in FA group failed in this
quality control (low DNA concentration), and therefore 9
FA and 10 CAP samples were subjected to library prepar-
ation and sequencing. The bacterial 16S rRNA gene V4
region and fungal ITS1 region were amplified by PCR
using primers as follows: the bacterial community [19]:
barcoded 515F (5′-GTG CCA GCM GCC GCG G-3′) and
the reverse primer 907R (5’-CCG TCA ATT CM TTT
RAG TTT-3′); the fungal community [20]: ITS1F (5’-CTT
GGT CAT TTA GAG GAA GTA A-3′) and ITS2R (5’-
GCT GCG TTC TTC ATC GAT GC-3′). Each 20 μl
PCR reaction mix included 4 μl of 5× FastPfu buffer,
2 μl of 2.5 mM dNTPs, 0.8 μl of forward primer (5 μM), 0.
8 μl of reverse primer (5 μM), 0.4 μl of FastPfu polymer-
ase, 10 ng of template DNA, and ddH2O was added to
make up the final volume to 20 μl. Thermal cycling was
performed in a 9700 PCR System (ABI, GeneAmp 9700)
with the following cycling: initial denaturation at 95 °C
for 5 min followed by 27 cycles of denaturation at 95 °C
for 30 s, annealing at 55 °C for 30 s, extension at 72 °C for
45 s, and a final extension at 72 °C for 10 min. All PCR
products were subjected to agarose gel electrophoresis
(2%) followed by purification using the AXYGEN gel
extraction kit (Axygen). The purified amplicons were
quantified using the Quant-iT PicoGreen dsDNA Assay Kit
(Thermo Fisher) and QuantiFluor™-ST Blue-florescence
quantitative system (Promega). They were then sequenced
using the Illumina MiSeq system (Illumina) as per the
manufacturer’s guidelines.

Bioinformatics analysis
The primary sequencing data were saved in the Fastq
format at SRA (Sequence Archive, http://www.ncbi.nlm.
nih.gov/Traces/sra). All pyrosequencing reads were pre-
processed based on the barcode and primer-end readers
(PE readers) using Usearch software (version 7.1, http://
drive5.com/uparse/). All reads recruited to the following
analyses had the barcode, a minimal average quality score
of 20, and maximally 2 mismatches within the primers.

Additionally, all overlapped reads (a minimal overlap of
10 bp that had a mismatched rate of ≤0.2.) were merged.
To avoid unnecessary computations, the repetitive
sequences were extracted and discarded (http://drive5.
com/usearch/manual/singletons.html). The optimized
sequences were then clustered into operational taxonomics
units (OTUs) using UCLUST followed by de novo OTU
picking, and chimeras were removed using RDP gold data-
base on Usearch software (version 7.1, http://drive5.com/
uparse/). The bacterial and fungal taxonomy was assigned
using Naïve Bayesian classifier in QIIME platform [21, 22]
using SILVA database (Release 119, http://www.arb-
silva.de) [23] and Unite fungal database (Release 6, http://
unite.ut.ee/index.php) [24], respectively.

Microbial diversity and richness analysis
OTU-based alpha diversity was estimated using four
matrices of Mothur (www.mothur.org /wiki/Schloss_
SOP#Alpha_diversity, version v.1.30): ACE, Chao-1,
Shannon and Simpson. While ACE and Chao-1 estimators
are used to reflect the total number of species in a sample,
known as the richness of the community, Simpson and
Shannon estimators are quantitative indicators of bio-
diversity in a region. The calculation of Simpson and
Shannon estimators are based on different algorithms,
and a larger Simpson estimator or a smaller Shannon
estimator represents a lower community diversity. UniFrac
distance analysis and principal co-ordinates analysis (Pcoa)
using the relative abundance of OTUs were performed to
estimate the beta diversity of community. In addition,
linear discriminant effect size (LEfSe) analysis was used to
find features differentially represented between the groups:
a nonparametric factorial Kruskal-Wallis sum-rank test
was used to detect significantly (p < 0.05) differential taxa,
and the identified taxa were further subjected to a linear
discriminant analysis (LDA) to evaluate the effect size of
each single differential taxon.

Mediation analysis
The mediation analysis was performed to evaluate the
contribution of alteration in gut microbiota to CAP
exposure-induced abnormal glucose metabolism. The
total effect of CAP exposure on abnormality in glucose
homeostasis (X) was assumed to be decomposed into a
direct effect (Y) and an indirect effect (M) that is mediated
by alteration in gut microbiota. [25] The mediation was
then calculated based on two linear mixed effect (LME)
models as demonstrated below [26]:

Mi ¼ β0 þ αXi þ εi

Y i ¼ β00 þ λMi þ θXi þ ηi

Here i denotes subject (CAP exposure in the present
study). β0 and β00 are the intercepts for M and Y,
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respectively. The effect of X on M is designated as α, the
effect of M on Y is designated as λ, and the direct effect
of X on Y is designated as θ. εi and ηi are residuals for
M and Y, respectively. The mediation analysis was con-
ducted using R software (version 2.4.2, mediation
package).

Statistical analysis
All data were presented as mean ± SEM if not speci-
fied. Statistical significances were evaluated by stu-
dent’s t test or ANOVA analysis (with Bonferroni
post-test) using GraphPad Prism Software (version 5),
and a p < 0.05 was set as a significance. The area
under curve (AUC) for each mouse’s IPGTT and ITT
data were calculated using GraphPad Prism Software
(version 5. Ybaseline = 0, all peaks must go above the
baseline, and ignore peaks that are less than 10% of the
distance from minimum to maximum Y). The Spear-
man rank correlation and the Pearson correlation
analyses were performed using GraphPad Prism Soft-
ware (version 5).

Results
Chronic exposure to CAP results in glucose and insulin
intolerance
Figure 1a depicts the experimental scheme. The average
concentration of ambient PM2.5 during this period was
42.1 ± 23.5 μg/m3, and the average PM2.5 concentrations
in FA and CAP chambers were 12.3 ± 5.8 and 276.2 ±
170.1 μg/m3, respectively. As the exposure was performed
for 8 h/day and 6 days/week, the 24-h average PM2.5-
exposure levels for FA- and CAP-exposed mice during

this period were 33.6 and 109.0 μg/m3, respectively. The
exposure level of the CAP group was markedly higher
than the national ambient air quality standards of China
(35 μg/m3), but was common in areas with heavy air
pollution such as Beijing, China [27]. Table 1 shows that
the elemental composition of PM2.5 in the CAP chamber
was comparable to that of ambient PM2.5, suggesting the
technique efficiently concentrated the PM without altering
its composision. The relatively high crustal elements
including Si, Al, Ti, and Fe in PM2.5 [28] reflected the
undergoing major construction on this campus.
Chronic exposure to CAP has been shown to result

in glucose intolerance and insulin resistance in various
mouse models [29, 30]. Figure 1b and c reveal that
consistent with these previous studies, the 12-month
exposure to CAP versus FA significantly impaired mouse
glucose tolerance and induced a marked insulin resistance.

Chronic exposure to CAP alters the richness of gut
bacterial community
Increasing evidence has indicated that the gut microbiota
plays a crucial role in the homeostatic regulation of
glucose metabolism [31]. To investigate whether exposure
to ambient PM2.5 causes gut dysbiosis and subsequently
abnormal glucose metabolism, we collected faecal samples
from the FA- or CAP-exposed mice, and characterized
their bacterial and fungal communities through Illumina
amplicon sequencing. The bacterial genomic DNA
sequencing obtained 752,834 raw reads in total. After
merging overlaps and removing repetitive reads, an
average of 36,600 high quality sequences was identified
and clustered into 511 OTUs. The fungal genomic

Fig. 1 Chronic exposure to CAP results in glucose intolerance and insulin resistance. a The experimental scheme. b the response curves of IPGTT
after 12-month-exposure to FA/CAP. *p < 0.05 versus FA at the same time point, repeated measures two-way ANOVA. c the response curves of
ITT after 12-month-exposure to FA/CAP. *p < 0.05 versus FA at the same time point, repeated measures two-way ANOVA

Wang et al. Particle and Fibre Toxicology  (2018) 15:17 Page 4 of 13



DNA sequencing generated 921,548 raw reads in total. An
average of 38,153 high quality sequences was identified
and clustered into 669 OTUs.

The community richness and diversity estimators repre-
sent the integral level of dysbiosis of gut microbiota and
predict the development of abnormal glucose metabolism
[6]. Figure 2a and b demonstrate that chronic exposure to
CAP significantly reduced the faecal bacterial ACE and
Chao-1 estimators (the most frequently used indexes of
community richness). In contrast, CAP exposure did
not significantly influence the Shannon and Simpson
estimators of faecal bacterial community (the indexes
of the community diversity, Fig. 2c and d). Figure 2e-h
show that CAP versus FA exposure did not significantly
alter any α richness and diversity estimator of the faecal
fungal community.

Chronic exposure to CAP alters the composition of gut
bacterial and fungal communities
To further document the effects of CAP exposure on the
gut bacterial and fungal communities, hierarchical cluster-
ing analyses using taxonomical data were conducted.
Figure 3a reveals three clusters by the hierarchical cluster-
ing of the bacterial community composition: one is com-
posed of about half FA-exposed samples (FA2, FA3, FA6,
FA8, FA9 and FA10); another contains about half CAP-
exposed samples (CAP5, CAP7, CAP8, CAP9 and CAP10);
and the third includes all the remaining samples (FA1,
FA5, FA7, CAP1, CAP2, CAP3, CAP4 and CAP6). These
results suggested that in spite of the marked individual
variation, the clustering of samples was evident. This
clustering was corroborated by principal coordinate ana-
lysis (Pcoa) using unweighted UniFrac values (Fig. 3c). In
contrast, no evident clustering of samples was observed
when performing hierarchical clustering and Pcoa using
the fungal community composition data (Fig. 3b and d).
Figure 3a shows that the gut bacterial community of the

FA- or CAP-exposed mice was primarily comprised of
Bacteroidetes (60.4 ± 12.9%), Firmicutes (36.0 ± 12.7%),
Deferribacteres (1.5 ± 1.7%), Tenericutes (0.9 ± 1.3%),
Proteobacteria (0.7 ± 0.3%), and Cyanobacteria (0.3 ± 0.3%).
The gut fungal community (Fig. 3b) comprised primarily
Ascomycota (87.9 ± 8.9%), Basidiomycota (9.2 ± 9.0%),
unclassified (2.7 ± 2.6%), and Zygomycota (0.2 ± 0.3%).
CAP versus FA exposure did not result in any significant
difference in the relative abundance of these bacterial and
fungal phyla.
To document the impact of CAP exposure on the

composition of gut microbiota, we performed LEfSe ana-
lyses using the relative abundance data to identify the bac-
terial and fungal taxa differentially represented between
FA- and CAP-exposed groups. Figure 4 shows that there
were 24 differential bacterial taxa and 21 differential fun-
gal taxa. Specifically, CAP exposure significantly increased
the relative abundance of 9 bacterial and 17 fungal taxa,
and significantly decreased the relative abundance of 15
bacterial and 4 fungal taxa.

Table 1 Ambient PM2.5 and CAP samples were collected weekly,
and the elemental composition was determined by ICP-MS

Ambient CAP

μg/m3 % μg/m3 %

Na 0.12 ± 0.02 0.29 1.06 ± 0.41 0.38

Mg 0.94 ± 0.05 2.23 5.65 ± 0.83 2.05

Al 3.09 ± 0.13 7.33 18.83 ± 2.25 6.82

Si 11.51 ± 0.47 27.32 71.42 ± 6.9 25.86

P 0.04 ± 0.01 0.09 0.33 ± 0.09 0.12

S 0.44 ± 0.27 1.05 6.41 ± 5.84 2.32

Cl 0.02 ± 0.03 0.04 0.74 ± 1.01 0.27

K 0.41 ± 0.06 0.97 3.16 ± 0.84 1.14

Ca 21.62 ± 0.64 51.32 139.19 ± 5.96 50.40

Ti 0.94 ± 0.02 2.23 6.28 ± 0.11 2.27

Cr 0.02 ± 0.003 0.06 0.17 ± 0.03 0.06

Mn 0.01 ± 0.01 0.02 0.21 ± 0.29 0.08

Fe 1.5 ± 0.04 3.59 11.7 ± 2.61 4.24

Ni 0.01 ± 0.003 0.03 0.11 ± 0.06 0.04

Cu 0.01 ± 0.002 0.01 0.07 ± 0.06 0.03

Zn 0.06 ± 0.01 0.13 0.96 ± 0.79 0.35

Ga 0.02 ± 0.001 0.04 0.13 ± 0.01 0.05

As 0.24 ± 0.01 0.57 1.63 ± 0.05 0.59

Br 0.003 ± 0.005 0.01 0.18 ± 0.24 0.06

Rb 0.01 ± 0.001 0.02 0.07 ± 0.01 0.02

Sr 0.37 ± 0.02 0.89 2.44 ± 0.07 0.88

Y 0.01 ± 0.001 0.02 0.06 ± 0.01 0.02

Zr 0.2 ± 0.01 0.47 1.4 ± 0.05 0.51

Nb 0.01 ± 0.001 0.02 0.05 ± 0.001 0.02

Sn 0.005 ± 0.004 0.00 0.01 ± 0.01 0.00

Sb 0.005 ± 0.006 0.01 0.04 ± 0.02 0.01

Ce 0.21 ± 0.02 0.51 1.49 ± 0.03 0.54

Pr 0.03 ± 0.01 0.07 0.22 ± 0.02 0.08

Eu 0.05 ± 0.01 0.13 0.37 ± 0.06 0.14

Gd 0.01 ± 0.01 0.02 0.04 ± 0.03 0.01

Tb 0.08 ± 0.01 0.19 0.38 ± 0.18 0.14

Er 0.01 ± 0.005 0.03 0.17 ± 0.15 0.06

Lu 0.02 ± 0.003 0.05 0.23 ± 0.13 0.08

W 0.004 ± 0.003 0.01 0.03 ± 0.02 0.01

Ir 0.002 ± 0.002 0.00 0.002 ± 0.001 0.00

Hg 0.01 ± 0.001 0.02 0.05 ± 0.01 0.02

Pb 0.01 ± 0.006 0.03 0.15 ± 0.1 0.05

Bi 0.002 ± 0.001 0.01 0.03 ± 0.01 0.01

U 0.08 ± 0.02 0.18 0.73 ± 0.16 0.27
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The association between CAP exposure-induced alterations
in gut microbiota and abnormalities in glucose metabolism
To test whether the alteration in gut microbiota medi-
ates CAP exposure-induced abnormalities in glucose
metabolism, we performed correlation analyses using
the richness and diversity estimators of gut bacterial
community and their indicators of glucose homeostasis.
Figure 5a shows that while there was no significant
correlation between the α diversity estimators of gut
bacterial community and the fasting glucose level, the
ACE and Chao-1 estimators of gut bacterial community
appeared to be associated with insulin sensitivity (Fig. 5b),
and all four α diversity estimators appeared to be correlated
with glucose tolerance (Fig. 5c). In contrast, we did not
observe any significant correlation between the richness
and diversity estimators of gut fungal community and their
indicators of glucose homeostasis (Fig. 5d-f).
To further document whether CAP exposure-

induced abnormalities in glucose homeostasis can be
attributable to change in any single bacterial or fun-
gal taxon, we performed Spearman rank correlation
analyses using the indicators of glucose homeostasis
and the relative abundances of differential bacterial
and fungal taxa. Table 2 reveals that there was no
significant correlation between the relative abundance of
differential bacterial taxa and the fasting glucose level, but
the relative abundances of 14 and 20 differential bacterial
taxa were significantly correlated with IPGTT AUC and
ITT AUC, respectively. Of these, 2 and 9 bacterial taxa
were positively correlated with IPGTTAUC and ITT AUC,
respectively. In contrast, there were only 5 significant

correlations between the relative abundance of differential
fungal taxa and the indicators of mouse glucose homeosta-
sis (Table 3).
To statistically assess how much CAP exposure-induced

abnormalities in glucose homeostasis is accounted for by
changes in the gut microbiota, we performed the mediation
analyses. Table 4 shows that the change in the Chao-1
estimator of the gut bacterial community accounted for
15% of CAP exposure-induced change in IPGTT AUC.
No other significant mediation was observed.

Discussion
Exposure to ambient PM2.5 correlates to increased insulin
resistance and/or impaired glucose tolerance and thus is
implicated in the pathogenesis of diabetes [10]. Emerging
evidence has demonstrated that the gut microbiota may
play an important role in the maintenance of glucose
homeostasis [31]. However, it remains to be determined
whether PM2.5 exposure impacts the gut microbiota and if
its adverse health effects are mediated through this alter-
ation. In the present study, we demonstrated that chronic
exposure to CAP induced marked insulin resistance and
impaired glucose tolerance in C57Bl/6 J mice in associ-
ation with a decrease in the richness in (ACE and Chao-1)
estimators of faecal bacterial but not fungal communities,
and alteration in the composition of gut microbiota. As
such, the present data highlight a role of the gut micro-
biota in the development of adverse health effects due to
exposure to ambient PM2.5, particularly abnormalities in
glucose homeostasis.

Fig. 2 Chronic exposure to CAP alters the richness but not diversity of faecal bacterial community. Male C57Bl/6 J mice were exposed to FA or
CAP for 12 months and faecal samples were collected and subjected to microbiomics analysis. a-d the alpha diversity estimators of faecal
bacterial community. e-h the alpha diversity estimators of faecal fungal community. n = 9 or 10/group. *p < 0.05 versus FA, student t test
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The role of gut microbiota in the development of a
multitude of complex human diseases is attracting attention
in many relevant scientific communities [31]. However,
while exposure to ambient PM2.5 has been shown to
correlate with the majority of these diseases, its effect
on the gut microbiota remains unclear. To the best of our
knowledge, this is the first study showing significant effects
of inhalation exposure to CAP on the gut microbiota. Oral
ingestion of inhalable particulate matter (PM10), ultrafine
particulate matter (PM0.1), or chemicals present in ambient
PM2.5 has been shown to alter mouse gut microbiota
[12–14]. Although oral ingestion is not the primary
route of exposure for ambient PM2.5 pollution, PM2.5

deposited in the lower airway may be cleared through
the combined action of phagocytic cells (macrophages
and granulocytes and the mucociliary escalator, with a
marked proportion of PM2.5 ultimately being ingested.
Therefore, these studies [12–14] not only are consistent
with the present data but also provide potential mecha-
nisms for the impact of PM2.5 inhalation on the gut
microbiota. However, caution should be taken when
interpreting these data as whether PM2.5 inhalation impacts
the gut microbiota through the ingested PM2.5 remains to
be determined.
The richness and diversity estimators represent the

integral status of gut microbiota and appeared to be better

b

c d

a

Fig. 3 Chronic exposure to CAP alters the composition of faecal bacterial community. a and b the phyla composition of mouse faecal microbiota after
12 months exposure to FA or CAP. Hierarchical clustering analysis was conducted using taxonomical data. c and d the Pcoa using unweight UniFrac values
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predictors for abnormal glucose metabolism than the
relative abundance of single taxon [6]. While the richness
reflects the number of species per sample (the more
species present in a sample, the ‘richer’ the sample), the
diversity depends not only on richness, but also on the
relative abundance of the different species making up the
richness of a sample. In the present study, we showed that
exposure to CAP significantly decreased the richness esti-
mators of gut bacterial community (Fig. 2a and b), which
is consistent with the absence of many bacterial taxa in
the gut microbiota of CAP-exposed animals (Table 2). In

contrast, we did not observe any significant effect of CAP
exposure on the bacterial diversity as indicated by the
Shannon and Simpson estimators. This is consistent with
the present data showing no significant difference in the
relative abundances of bacterial phyla (Fig. 3). The lack of
effect on the diversity of gut bacterial community is in
direct contrast to the marked effects of ingestion of PM10

or PM0.1 on the relative abundance of phyla [12, 13]. This
inconsistency may reflect the difference in the routes of
exposure, re-emphasizing serious consideration of the
route of exposure in PM2.5 toxicological studies.

a

b

Fig. 4 The differential taxa between FA- and CAP-exposed mice. a the cladogram of faecal bacterial community. b the cladogram of faecal
fungal community
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a

b

c

d

e

f

Fig. 5 The correlations between the richness and diversity of faecal microbiota and the indictors of glucose homeostasis. The Pearson’s correlation
analyses were performed between the fasting glucose level (a and d), the area under curve (AUC) of ITT (b and e), the AUC of IPGTT (c and f), and the
alpha diversity estimators of faecal bacterial (a-c) or fungal (d-f)
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In the present study, we corroborated the glucose
intolerance and insulin resistance following chronic expos-
ure to CAP (Fig. 1), reaffirming the glucose-metabolic
effect of PM2.5 exposure [32]. Importantly, the present
study revealed an association between CAP-induced
glucose intolerance and alteration in the bacterial richness
(Table 4), suggesting that the gut microbiota plays a role in
the development of diabetes due to exposure to ambient
PM2.5. In contrast, we did not observe any significant

mediation of abnormalities in glucose homeostasis by alter-
ation of single bacterial taxon. This is in accordance with
the above-mentioned notation that the richness and diver-
sity estimators may be better predictors for abnormal glu-
cose metabolism than the abundance of single taxon [6].
In addition to the alteration in richness of gut microbiota,

the present study also calls attention to the role of some
specific species in CAP exposure-induced abnormal glucose
metabolism. For example, we showed that Clostridium

Table 2 The bacterial taxa significantly different between FA- and CAP-exposed mice (LEfSe analysis) and significantly correlated
with the indicator of glucose metabolism (Spearman correlation analysis). n = 9 or 10/group

Rank Taxon LEfSe Spearman

mean(FA) mean(CAP) p-value rho p-value

IPGTT AUC Class Epsilonproteobacteria 0.00012 0.00000 0.013 −0.537 0.018

Order Campylobacterales 0.00012 0.00000 0.013 − 0.537 0.018

Family Helicobacteraceae 0.00012 0.00000 0.013 −0.537 0.018

Peptostreptococcaceae 0.00041 0.00000 0.013 −0.591 0.008

Genus Clostridium sensu stricto 1 0.00088 0.00000 0.013 −0.540 0.017

Helicobacter 0.00012 0.00000 0.013 −0.537 0.018

Romboutsia 0.00041 0.00000 0.013 −0.591 0.008

Turicibacter 0.00056 0.00000 0.013 −0.551 0.015

Species Clostridium sensu stricto 1_uncultured bacterium 0.00088 0.00000 0.013 −0.540 0.017

Helicobacter hepaticus 0.00012 0.00000 0.013 −0.537 0.018

Romboutsia_uncultured bacterium 0.00041 0.00000 0.013 −0.591 0.008

Ruminiclostridium 5_Unclassified 0.00075 0.00191 0.017 0.465 0.045

Ruminiclostridium 5_uncultured Clostridiales bacterium 0.00017 0.00037 0.010 0.458 0.049

Turicibacter_uncultured bacterium 0.00056 0.00000 0.013 −0.551 0.015

ITT AUC Class Epsilonproteobacteria 0.00012 0.00000 0.013 − 0.468 0.043

Order Campylobacterales 0.00012 0.00000 0.013 −0.468 0.043

Mycoplasmatales 0.00000 0.00338 0.028 0.487 0.035

Family Helicobacteraceae 0.00012 0.00000 0.013 −0.468 0.043

Mycoplasmataceae 0.00000 0.00338 0.028 0.487 0.035

Peptostreptococcaceae 0.00041 0.00000 0.013 −0.610 0.006

Genus Clostridium sensu stricto 1 0.00088 0.00000 0.013 −0.572 0.011

Helicobacter 0.00012 0.00000 0.013 −0.468 0.043

Mycoplasma 0.00000 0.00338 0.028 0.487 0.035

Romboutsia 0.00041 0.00000 0.013 −0.610 0.006

Turicibacter 0.00056 0.00000 0.013 −0.559 0.013

Species Alistipes finegoldii 0.00912 0.03625 0.013 0.692 0.001

Clostridium sensu stricto 1_uncultured bacterium 0.00088 0.00000 0.013 −0.572 0.011

Helicobacter hepaticus 0.00012 0.00000 0.013 −0.468 0.043

Marvinbryantia_uncultured bacterium 0.00002 0.00050 0.035 0.539 0.017

Mycoplasma sualvi 0.00000 0.00338 0.028 0.487 0.035

Rikenella microfusus DSM 15922 0.00000 0.00067 0.028 0.496 0.031

Romboutsia_uncultured bacterium 0.00041 0.00000 0.013 −0.610 0.006

Ruminiclostridium 5_Unclassified 0.00075 0.00191 0.017 0.610 0.006

Turicibacter_uncultured bacterium 0.00056 0.00000 0.013 −0.559 0.013
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sensu strito 1 was absent in CAP-exposed mice and mean-
while negatively correlated with mouse glucose intolerance
and insulin resistance, strongly supporting its implication in
CAP exposure-induced diabetes. This is perfectly consistent
with its anti-diabetic effects in humans and animal models
[33]. The present study also showed that Helicobacter
hepaticus was absent in CAP-exposed mice and negatively
correlated with mouse glucose intolerance and insulin
resistance. However, given that it is positively correlated
with Vitamin D deficiency-induced glucose intolerance
[34], further study is needed to verify its role in CAP
exposure-induced insulin resistance and glucose intoler-
ance. Moreover, the present study revealed that in addition
to the two species above, several other gut microbe species
were significantly altered by CAP exposure and correlated
with glucose intolerance and/or insulin resistance (Table 2).
However, their role in the host’s glucose homeostasis regu-
lation has not yet been investigated, warranting further
studies to examine these correlations.
Compared to the gut bacterial community, the gut

fungal community draws less attention in the diabetes
area. Interestingly, the present study showed comparable
numbers of bacterial and fungal differential taxa (Fig. 4).
It is however noteworthy that CAP exposure decreased the
abundance of most differential bacterial taxa but increased
the abundance of most differential fungal taxa. Given the
various examples of antagonism between bacteria and
fungi [35], these apparently opposite effects of CAP expos-
ure may represent another antagonism between bacteria

and fungi and thus warrant further studies to determine
which the primary effect of CAP exposure is. In addition,
mediation analyses showed that the decrease in the
richness of gut bacterial community partly accounted
for CAP exposure-induced impairment of glucose tolerance,
and correlation analyses revealed much more bacterial
versus fungal differential taxa that were significantly
correlated with the indicators of mouse glucose metabolism
(Tables 3 and 4).
Although the present study demonstrates a marked

impact of CAP exposure on the gut microbiota and impli-
cates it in the development of diabetes due to exposure to
ambient PM2.5, several limitations should be noted. Firstly,
we did not investigate the causality between CAP exposure-
induced dysbiosis and abnormalities in glucose homeostasis.
This will require using antibiotics-treated and/or germ-free
mice. Secondly, we did not ascertain the time- and dose-
dependency of this CAP exposure-induced dysdiosis, which
are valuable for the delineation of role of gut microbiota in
the development of adverse health effects due to exposure
to PM2.5. Thirdly, while ingestion of ambient particles was
shown to alter the composition and function of gut micro-
biota [11–14], how PM2.5 inhalation may impact the gut
microbiota and subsequently contribute to abnormalities in
glucose metabolism remains to be determined. Inflamma-
tion is widely believed to be central in the development
of adverse health effects due to exposure to PM2.5 [36].
Notably, inflammatory diseases such as multiple sclerosis
and arthritis have been shown to be correlated with

Table 4 The mediation analysis. n = 9 or 10/group

Glucose metabolism ACE Chao-1 Shannon Simpson

indicator Proportion
mediated

p-value Proportion
mediated

p-value Proportion
mediated

p-value Proportion
mediated

p-value

Bacteria Fasting glucose −0.118 0.56 −0.127 0.44 −0.092 0.68 −0.024 0.92

IPGTT AUC 0.065 0.56 0.154 0.04 0.115 0.56 0.052 0.48

ITT AUC 0.032 0.88 0.058 0.72 0.023 0.88 0.013 0.72

Fungus Fasting glucose −0.29 0.28 −0.216 0.36 −0.104 0.56 −0.224 0.44

IPGTT AUC 0.022 0.72 0.036 0.76 0.013 0.96 0.1 0.4

ITT AUC −0.033 0.76 −0.017 0.72 −0.078 0.64 −0.04 0.8

Table 3 The fungal taxa significantly different between FA- and CAP-exposed mice (LEfSe analysis) and significantly correlated with
the indicator of glucose metabolism (Spearman correlation analysis). n = 9 or 10/group

Rank Taxon LEfSe Spearman

mean(FA) mean(CAP) p-value rho p-value

Fasting glucose Species Aspergillus_flavipes 0.03071 0.00118 0.017 0.578 0.010

IPGTT AUC Species Aspergillus_penicillioides 0.12700 0.23508 0.001 0.493 0.032

ITT AUC Genus Talaromyces 0.00457 0.00840 0.022 0.526 0.021

Species Aspergillus_penicillioides 0.12700 0.23508 0.001 0.667 0.002

Talaromyces_Unclassified 0.00447 0.00816 0.017 0.511 0.026
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changes in the gut microbiota [37], suggesting that inflam-
mation may play a role in the alteration of gut microbiota
due to exposure to PM2.5. Also, given the different feeding
and pathologic patterns between humans and mice,
human studies are needed to confirm the specialized
role of gut microbiota in the development of abnormal
glucose metabolism due to exposure to ambient PM2.5.

Conclusions
In the present study, we demonstrated that inhalation
exposure to PM2.5 induced abnormal glucose homeostasis
and change in the composition of gut microbiota. Their
strong correlation suggests that the gut microbiota may be
crucial for PM2.5 exposure-induced metabolic disorders.
As such, our results suggest a novel mechanism for PM2.5

exposure-induced adverse health effects and thus provide
potential targets for the development of effective preven-
tion and/or treatment.
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