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Abstract

Background: The challenge remains to reliably mimic human exposure to high aspect ratio nanoparticles (HARN)
via inhalation. Sophisticated, multi-cellular in vitro models are a particular advantageous solution to this issue, especially
when considering the need to provide realistic and efficient alternatives to invasive animal experimentation for HARN
hazard assessment. By incorporating a systematic test-bed of material characterisation techniques, a specific air-liquid
cell exposure system with real-time monitoring of the cell-delivered HARN dose in addition to key biochemical
endpoints, here we demonstrate a successful approach towards investigation of the hazard of HARN aerosols

in vitro.

Methods: Cellulose nanocrystals (CNCs) derived from cotton and tunicates, with differing aspect ratios (~9 and ~80),
were employed as model HARN samples. Specifically, well-dispersed and characterised CNC suspensions were aerosolised
using an “Air Liquid Interface Cell Exposure System” (ALICE) at realistic, cell-delivered concentrations ranging from 0.14 to
1.57 ug/cm?. The biological impact (cytotoxicity, oxidative stress levels and pro-inflammatory effects) of each
HARN sample was then assessed using a 3D multi-cellular in vitro model of the human epithelial airway barrier

at the air liquid interface (ALl) 24 hours post-exposure. Additionally, the testing strategy was validated using both
crystalline quartz (DQ12) as a positive particulate control in the ALICE system and long fibre amosite asbestos
(LFA) to confirm the susceptibility of the in vitro model to a fibrous insult.

Results: A rapid (€4 min), controlled nebulisation of CNC suspensions enabled a dose-controlled and spatially
homogeneous CNC deposition onto cells cultured under ALI conditions. Real-time monitoring of the cell-delivered
CNC dose with a quartz crystal microbalance was accomplished. Independent of CNC aspect ratio, no significant
cytotoxicity (p > 0.05), induction of oxidative stress, or (pro)-inflammatory responses were observed up to the
highest concentration of 1.57 pg/cm? Both DQ12 and LFA elicited a significant (p < 0.05) pro-inflammatory response at
sub-lethal concentrations in vitro.

Conclusion: In summary, whilst the present study highlights the benign nature of CNCs, it is the advanced technological
and mechanistic approach presented that allows for a state of the art testing strategy to realistically and efficiently
determine the in vitro hazard concerning inhalation exposure of HARN.
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Introduction

Commercial production of a diverse range of high aspect
ratio nanoparticles (HARN; aspect ratio >3) is rapidly in-
creasing, with an inevitability that they will be readily ex-
posed to humans [1,2]. Thus, inhalation of airborne HARN
is a realistic scenario, posing a potential risk towards human
health [3—5] within either an occupational or consumer
setting [6]. Due to their low aerodynamic diameter, HARN
may enter the deepest regions of the human lung freely
[3]. Understanding the potential for HARN to cause ad-
verse health effects is limited at this moment in time due
to a lack of test systems that can efficiently mimic human
exposure to HARN aerosols and provide insight into the
mechanistic HARN-cell interaction [3]. In this context, as
well as the research principles of the 3R (refine, reduce
and replace) [7], there is an urgent requirement for realis-
tic and reliable testing strategies that may be used to gain
an intrinsic understanding of how HARN could affect the
lung at the cellular level [8], as well as provide an alterna-
tive to invasive animal experimentation [9]. It must also
be highlighted that in vivo approaches can lack under-
standing of species specificity and cellular mechanics, sug-
gesting that information gained from such experimental
approaches may not necessarily be predictive of human
exposure effects to HARN [10]. On the other hand, well-
characterised and anatomically correct multi-cellular in vitro
models offer an ideal platform to systematically eluci-
date both organ specificity and localised cellular influ-
ences for any potentially harmful effects that could be
induced by HARN [11].

When considering the human lung in vitro the use of
air liquid interface cell cultures represent a more realistic
perspective [12], especially when compared to submerged
exposures, due to increased exposure specificity and the ab-
sence of suspension artifacts [13]. Currently, no air-liquid
exposure systems have been shown to reliably and effi-
ciently nebulise HARN for in vitro toxicology research.
Instead, such in vitro systems have focused on the neb-
ulisation effects of spherical (nano)particles [14-17].
Most systems that have attempted to nebulise HARN
however, have been specific to animal-based experi-
mental strategies [18—24]. Thus, a new and advanced
in vitro testing strategy to investigate the risk of HARN
from a perspective of inhalation exposure is presented,
using cellulose nanocrystals (CNCs) as a model. With simi-
lar beneficial mechanical and physical properties to those
of carbon nanotubes [25,26], CNCs are on the verge of
mass production [27], and thus pose a potentially height-
ened risk for human exposure, notably via inhalation.

The afore-mentioned testing strategy was achieved by sys-
tematically combining three cornerstones of nanotoxicology
research. A thorough material characterisation was per-
formed to gain an intrinsic understanding of the mater-
ial prior to, and following aerosolisation. Aerosols were
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produced to mimic HARN inhalation using the “Air
Liquid Interface Cell Exposure System” (ALICE), as de-
scribed by Lenz et al. [16] for spherical nanoparticles,
thereby establishing the efficient nebulisation and real-
time monitoring of well-dispersed HARN with the ALICE.
These components were complemented by the use of a
sophisticated 3D in vitro model of the epithelial airway
barrier [11] to assess the systems’ applicability for HARN
hazard assessment in vitro. Furthermore, to confirm the
sensitivity of the biological system within this experi-
mental set-up, crystalline quartz (DQ12) and long fibre
amosite asbestos (LFA), both known for their pathogenic
effects, were included as positive ‘crystalline particle’ and
‘fibrous particle, respectively. Combined, this satisfied a
number of current knowledge gaps within the field regard-
ing applicable, alternative in vitro testing strategies.

Results

Characteristics of cellulose nanocrystals

Detailed physico-chemical characterisation of both CNC
types and additional information, also to the control ma-
terials, is summarised in Tables 1 (CNCs) and 2 (DQ12
and LFA). Following extraction, dispersion by sonication
in ultrapure, deionised water led to rod-shaped fibers
with a common size distribution, as determined from
transmission electron microscopy (TEM), with averages of
170 £ 72 nm in length and 19 + 7 nm in width for ¢-CNCs
(Figure 1a) and longer fibers of 2.3+ 1.4 um in length
and 31+7 nm in width for t-CNCs (Figure 1b). The
nanocrystals displayed the typical chemical composition
of pure cellulose, with trace amounts of sulfur introduced
solely by the isolation process. As expected [25,28], both
types of CNCs formed stable suspensions after dispersion
in ultrapure water and following strong ultrasound sonic-
ation for 1 h. Further to this, depolarized dynamic light
scattering (DDLS) showed no significant changes in ro-
tational or translational diffusion co-efficients of the
suspensions over a 24 h period, indicating that the sus-
pensions were stable under these conditions [29] (Table 1).
Visual examination of the suspension after two weeks
(Additional file 1: Figure S1) further supported the stability
of the CNC as shown by DDLS, suggesting that suspen-
sions of this nature can remain stable in this environment
for up to several weeks, similarly in the presence of NaCl.

Nebulisation of CNCs/HARN

In the present study, the ALICE has been used for the first
time to establish the nebulisation of HARN, using CNCs
as an example, to provide a basis for realistic inhalation
hazard assessment of HARN in vitro. To confirm cloud
production efficiency, cloud production rate was moni-
tored by nebulising 1 mL of ¢-CNC and t-CNC suspen-
sions, respectively. The addition of ions, in this case
500 uM NaCl, to the CNC suspensions permitted ideal
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Table 1 Physico-chemical characteristics of CNCs derived from cotton (c-CNC) or tunicates (t-CNC)
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Dimension? Aspect Chemical Surface charge® Stiffness Stability®
t") A composition® _ P oy
(nm) ratio (%) (mmol SO3/kg) (GPa) Dr x107® (cm?/s) D (s™)
170 + 72 (1) x Q4145 + 3,029 (0 h)281+032 (0 h) 645+ 40
c-CNC 92 +37 (H)6.03 + 0.48" 56 £49 ~105 [57]
19+7(w) (51018 + 003 (24 h) 3.11 +0.14 (24 h) 675+ 88
.18 = 0.
2300 £ 1400 () (©)39.88 + 0.669 (0h)224+023 (0 h) 425+ 130
t-CNC 80 + 21 (H)5.73 + 0.06" 133+ 24 ~143 [58]
x31+7(w) (51047 + 005 (24 h) 236 + 0.32 (24 h) 34.1 + 88
47 + 0.

Transmission electron microscopy, “Elemental analysis, Titration, “Depolarised dynamic light scattering, ®Translational diffusion coefficient, ‘Rotational diffusion

coefficient; theoretical values for pure cellulose 9(C) 44.31% and "(H) 6.51%.

Data is presented as the mean * standard deviation (SD), except for depolarised dynamic light scattering (DDLS), where standard error of the regression analysis is

given (SE).

nebulisation of CNCs, while concomitantly improving and
stabilising the output rates significantly without interfering
with quantification of CNC deposition (Additional file 2).
This format ensured a repeatable and efficient dense cloud
production, a controlled CNC delivery of all c-CNC or t-
CNC test concentrations (0.1, 0.5, 1.0 mg/mL), as well as
the negative control (500 pM NaCl) (Additional file 3:
Table S1). The mean output rate for each HARN material
closely matched the cloud production of zinc oxide nano-
particles and a basic salt solution (90-150 s for nebulisa-
tion of 1 mL), as previously reported by Lenz et al. [16].

Deposition characterisation

By exposing protein pre-coated copper grids placed at
the bottom of the ALICE, the morphology of deposited
CNCs was investigated via TEM (Figures 2a and 2b, and
Additional file 4: Figure S2 a-d). Quantitative analysis of
the TEM images revealed that the deposited c¢-CNCs
had a length of 161 + 61 nm and a diameter of 16 + 5 nm,
whereas t-CNCs had a length of 2.1+ 1.0 pum and a width
of 20 + 5 nm (aspect ratios: c-CNCs 11 + 5; t-CNCs 108 +
57). To quantify the deposition of the two nanocrystal types
on the bottom of the ALICE, two independent methods
were applied; (i) an integrated quartz crystal microbalance
(QCM) for real-time monitoring of cell-delivered dose and

(ii) the system independent anthrone assay. Results
showed a controlled, dose-dependent, and repeatable
deposition of both CNCs types when nebulising 1 mL
suspension (Figure 2c, filled spheres and triangles). The
anthrone assay (Figure 2c, empty spheres and rectangles)
validated the results of the QCM measurements as a use-
ful tool to detect the cell-delivered HARN dose. Most
importantly, the anthrone assay as a reference method
supported the findings of the QCM at the lowest depos-
ited dose, which lay near to the QCM detection limit
(90 ng/cm?) (filled rectangle at 0.1 mg/mL t-CNCs,
Figure 2c). Average deposited doses of both materials
and methods were 0.14 +0.04, 0.81 +0.03 and 1.57 +
0.03 pg/cm®. The negative control (500 uM NaCl) was
below the detection limit in both methods. A deposited
dose of 0.23+0.08 pg/cm® was recorded for DQI2.
The deposition efficiency for nebulizing CNCs with the
ALICE system was calculated as 67 + 8% for c-CNCs
and 64 + 1% for t-CNCs, which is in agreement with
the deposition efficiency of spherical nanoparticles (~57 +
7%), as previously reported [16]. Additionally, the anthrone
assay [30] quantitatively confirmed the deposition pattern of
¢-CNCs, as well as t-CNCs, within the ALICE to be highly
uniform, supporting the qualitative impression formed
for the deposition of CNCs with the ALICE via TEM

Table 2 Physico-chemical characteristics of DQ12 [56] and LFA [5,45,46]

Dimension (um) Geometric aspect ratio

Chemical composition (%) Stiffness (10% kg/cm?)

DQ12 0.7-6 -
537 (I) X 040 (w)
LFA 50.36% >15 ()" 8.8*

35.25% > 20 ()"

crystalline SiO, 87

amorphous SiO,

Na>O, K0, LiO2, Al, K, Ca, Ti, Fe
SiO, 49-52*

FeO 35-40

Fe,O3 0-5

MgO 5-7

Al,05, Ca0, Na’0, N°O*

1620 [40]

*Deduced from the geometric mean length (3.1 pm) and width (0.35 pm) of LFA [46].

#Key size ranges.
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Figure 1 Morphology of CNCs in stock suspension. Transmission electron microscopy images of c-CNCs (a) and t-CNCs (b) after dispersion in
ultrapure water. Histograms show the size distribution as counts (y-axis) and length (nm) (x-axis) of c-CNCs (@') and t-CNCs (b"). Scale bars represent 1 um.
Dimensions were derived from 100 individual measurements of 3 individual nebulisations (n = 3).

1000 2000 3000 4000 5000 6000
length (nm)

(Figures 2a and 2b, Additional file 4: Figure S2 a-d), when
comparing the deposited CNCs in each of the six individual
wells of a trans-well plate for cell culture (Additional file 5:
Figure S3). This mentioned, visual examination of deposited
CNCs on exposed pre-coated, protein rich copper grids
demonstrated that the nebulisation process, particularly the
vibrating membrane and its pore-size, did not induce any
rupture or fracture upon the fiber-shaped nanocrystals
(Figures 2a and 2b and Additional file 4: Figure S2 a-d).

Hazard assessment of CNC aerosols
For each CNC material, at all tested concentrations no
significant cytotoxicity was observed, as measured by lactate

dehydrogenase (LDH) release (Additional file 6: Figure S4).
Similar findings were also evident for nebulised DQ12
([0.23 +0.08 pg/cmz]) and the positive fibrous control
LFA (Table 2). In the case of LFA, 100 pl of the suspen-
sion at 0.05 mg/mL was dropped onto the apical side of
the in vitro model at the air liquid interface, (referred
to as pseudo-ALI). These findings were subsequently
confirmed by the observation that no alteration to cell
morphology occurred after CNC exposure, as analysed
by confocal laser scanning microscopy, when compared
to the negative control. The cells formed a tight mono-
layer and also cell division was regularly observed for
all conditions tested (Figure 3, cell division is denoted

a
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Figure 2 Morphology and quantification of deposited CNC aerosols. Transmission electron microscopy images of 1 mL nebulised c-CNCs (a) and
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]
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Nebulized CNCs [mg/mL]

tCNCs (both 0.5 mg/mL) (b) deposited on pre-coated, protein rich copper grids using the ALICE system resulting in a deposited dose of 081 003 pg/cm?
Histograms show the size distribution as counts (y-axis) and length (nm) (x-axis) of c-CNCs (a") and t-CNCs (b"). Dimensions are measured from
pictures derived from nebulisations leading to mostly individually deposited fibers (c-CNCs 0.5 and 0.1 mg/mL; t-CNCs 0.1 mg/mL). Average dimensions
were calculated from 100 individual measurements of 3 individual nebulisations (n = 3). Quantification of deposited c-CNCs and t-CNCs after nebulisation at
0.1,05 and 1 mg/mL was performed using two independent methods (n = 3) (c). Dots (o) represent results for c-CNCs, triangles (A) t-CNCs; filled symbols =
QCM data, empty symbols = Anthrone data. The dotted line (....) displays the detection limit of the QCM (90 ng/cm?). Scale bars represent 1 um.
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Yellow arrows indicate cells undergoing cell division. Scale bars are 30 um.

Figure 3 Cell morphology of CNC exposed cell cultures. Confocal laser scanning microscopy analyzes visualising the actin cytoskeleton (red)
and the nuclei (cyan) of control (a) or 1.57 ug/cm2 of either c-CNCs (b) or t-CNC (c) exposed cells. The images represent xy- and xz-projections.

by yellow arrows). It also could be shown that DQ12 and
LFA exposed cells did not undergo any cellular changes
and in addition no cytotoxicity was observed compared
to the negative control (Additional file 6: Figure S4 and
Additional file 7: Figure S5). Subsequent assessment of
the potential sub-lethal effects of aerosolised c-CNCs and
t-CNCs analysed the oxidative stress status of the 3D cell
model by assessment of the total amount of reduced
glutathione (GSH), a key marker for oxidative stress [31],
and the (pro-)inflammatory response via cytokine (tumor
necrosis factor(TNF)-«) and chemokine (interleukin(IL)-8)
secretion (Figure 4). At all concentrations tested no signifi-
cant changes (p > 0.05) to the oxidative stress status of the
cell, or any mediated (pro-)inflammatory response were
observed for either CNC type. In contrast, DQ12 and LFA
elicited a notable, statistically significant (p < 0.05) release
of TNF-a and IL-8 after 24 h. Interestingly, DQ12 also
showed a slight depletion, although not significant (p >
0.05) in the total amount of reduced GSH at this time
point, most likely due to the enhanced inflammatory
response. LFA was not found to elucidate an oxidative
stress response within the triple cell co-culture at the
pseudo-ALL

Discussion

In the current study a successful approach to a next-level
testing strategy for in vitro inhalation toxicology research
for HARN is presented. The ALICE, as a reliable nebulisa-
tion platform for spherical particles [16], proved to be
applicable for the aerosolisation of HARN, as shown here
with CNCs either isolated from cotton (c-CNCs) [32]
or tunicates (t-CNCs) [33,34] (Table 1). Prolongation of
output rates by formed air bubbles or CNC-clusters were
successfully overcome by gaining a thorough understand-
ing of the materials’ physico-chemical characteristics,
especially their colloidal stability, as a pre-requisite for
controlled nebulisation under the applied conditions.
Material characterisation before and after the nebulisation
process, as well as potential damage to CNC morphology
by the vibrating membrane of the nebuliser was success-
fully excluded [35]. The deposition of CNCs via the

ALICE system was shown to fulfill all cornerstones
when compared to spherical particles [16], namely con-
trollability, dose dependency, spatial homogeneity and
deposition efficiency throughout all tested CNC concen-
trations and lengths. In this context, the QCM was used
as a real-time monitoring tool for the cell-delivered CNC
dose, as validated with an off-line reference method
(anthrone assay), giving important implications for future
HARN studies at the ALL The applicability of the system
for HARN aerosolisation has been further demonstrated
via the nebulisation of multi-walled carbon nanotubes
(unpublished data). Hence, the ALICE system can be con-
sidered as a highly suitable method for conducting realistic
in vitro inhalation hazard assessment of HARN.

The results of the hazard assessment presented in this
study highlight the benign nature of c-CNCs and t-CNCs
and are in accordance with previous studies [36,37]. Both
studies have shown CNCs, at lower doses (Kovacs et al.
0.03-10 g/L [36]; Peireira et al 0.02-100 pg/mL [37]), to
cause a limited adverse effect upon different biological sys-
tems (e.g. Rainbow trout, Daphnia magna, Vibrio fischeri,
Pseudokirchneriella subcapitata, fibroblasts) following ex-
posure. In the present study, it must be considered that all
exposure concentrations used can be defined as “overload”
situations. Despite this, they can be justified by extrapolat-
ing to the OSHA permissive exposure limits (PEL) for
cotton dust in cotton weaving industry workplaces (200 —
750 pug/m® 8 h time weight average) [38]. Following the
considerations by Lenz et al., presuming 50% nanofibre
deposition in the alveoli due to an unclear quantitative
background and 50% clearance in the case of a healthy
lung, together with a PEL of 750 ug/m?®, the lowest ex-
posure concentration tested in the present study corre-
sponds to an equivalent pulmonary CNC dose received
by a worker after 15 working weeks, up to three work-
ing years (at the highest deposited dose used) [16]. In this
regard, despite further research being necessary, within
the acute time period tested here the stiffness/rigidity of
the CNCs does not appear to influence the biochemical
cascade(s) reflected by the measured endpoints. This
finding is in contrast to previous findings for carbon
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Figure 4 Biochemical response of triple cell co-culture system following CNC exposure. (a) Tumor necrosis factor a (TNF-a) release,
(b) Interleukin 8 (IL-8) release and (c) oxidative stress status of the in vitro triple cell co-culture model after exposure to c-CNCs (black) or t-CNCs
(grey) to the three test concentrations (n = 3; +SEM). The respective controls are shown in white; DQ12 [0.23 + 0.08 pg/cm?2], LFA [100 ulL of 0.05
mg/mL], LPS [100 pL of 1 pug/mL] and TBHP [250 uL of 100 mM]. Dashed lines (— ) represent the level of the negative control. Data is presented
as the fold increase relative to the negative control. TNF-a and IL-8 data is expressed as a logarithmic scale (y-axis). * equals p < 0.05.
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nanotubes and asbestos fibres which, in the same range of
rigidity [39,40], elicit heightened adverse biological effects
[3]. In contrast to the presented results here, Clift et al. [41]
showed previously that c-CNCs delivered by suspension to
the same in vitro model can trigger a dose-dependent cyto-
toxicity and (pro-) inflammatory response. The differences
in results highlight the influence of the exposure method
on the characteristics of the material which can strongly in-
fluence the biological response by c-CNCs. Such influences
can be attributed to the interaction of the CNCs with the
components of the cell culture medium used, and most
notably the formation of a protein coating [13]. The lower
secretion of cytokines in the ALI cell system could also be
influenced by the lower diffusion rate due to absence of
media in the upper well in contrast to suspension exposure
scenarios.

To validate the testing strategy in terms of biological
sensitivity, a positive particulate aerosol control, DQ12,
and a positive fibre control (LFA) at the pseudo-ALI
(100 ul of 0.05 mg/mL LFA suspension applied to the
apical side (Table 2), were used. DQ12 showed the applic-
ability of ALICE nebulisations of a particulate agent caus-
ing (pro-)inflammatory reactions in combination with
the in vitro triple cell co-culture model at the air-liquid
interface, whilst LFA, exposed using pseudo-ALI expo-
sures, further demonstrated the susceptibility of the multi-
cellular model to a fibrous insult (Figure 4; Table 2). DQ12
and LFA elicited a minor but biologically relevant TNF-a
release, inducing a strong and significant IL-8 release (p <
0.05) after 24 h indicating that (pro-)inflammatory re-
sponses can be triggered by known, classical particulate
and fibrous inflammogens, such as DQ12 [42-44] and
LFA [45,46]. The results presented here therefore validate
the testing strategy in combination with the co-culture
model for the detection of respiratory toxicity of high
aspect ratio nanoparticles and fibres in vitro.

Finally, the notable lack of biochemical effects observed
upon acute exposure to c-CNCs and t-CNCs, respectively,
does not necessarily indicate that these organic HARN do
not elicit biochemical reactions within the multi-cellular
model in a chronic study. Predominantly, despite the ab-
sence of a (pro-)inflammatory response in the acute sce-
nario, fiber-associated responses like pro-fibrogenic effects
need to be taken into consideration within a chronic time
period due to prolonged continuous, or repeated exposure
to these HARN. Further to these aspects, additional on-
going research also focuses on the biodurability of these
materials as a key cornerstone for their potential long-
term toxicity. Additionally, the small decrease of antioxi-
dants (GSH) in the highest exposed dose of t-CNCs
(157 + 0.03 pg/cm?; Figure 4c) could hint at oxidative stress
caused by enhanced reactive oxygen species formation
because of nanocrystal interaction with mitochondria or
membrane-bound NADPH oxidases, with an absent (pro-)
inflammatory response (Figure 4a and 4b) [47]. Findings by
Peireira and colleagues [37], who measured up-regulated
mRNA levels for the antioxidant protein Peroxiredoxin 1
(PRDX1) after suspension exposure of fibroblasts to high
doses (2—5 mg/mL) of cotton CNCs, support these results.
It is therefore necessary that further studies are conducted
to elucidate the impact on the oxidative state by applying
realistic doses, chronically, to a relevant target tissue.

Conclusions

In the present study, an advanced mechanistic approach
has been formulated to create a state of the art testing
strategy for conducting realistic and efficient in vitro hazard
assessment concerning the inhalation exposure of HARN.
Further to this reliable and efficient outlook towards asses-
sing the potential risk of HARN, the strategy portrayed
herein can be considered as an advantageous alternative to
existing in vitro methodologies as well as a valid tool in the
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refinement, reduction and replacement of animal testing.
Finally, the low-toxicity potential of CNCs independent of
their length could be demonstrated, supported by relevant
inflammogenic particulate and fibrous positive controls.

Methods

Chemicals and reagents

All chemicals and reagents were purchased from Sigma-
Aldrich (Switzerland), unless otherwise stated. Ultrapure,
deionised water (sartorius stedim biotech, arium® 611DI;
sartorius, Germany) was used throughout all experiments.

Extraction of cotton and tunicate cellulose nanocrystals
Cotton cellulose nanocrystals (c-CNCs) were extracted from
Whatman No. 1 filter paper (WhatmanTM Ltd., England)
following the protocol by Capadona et al. [48], that is a
modification of the method previously described by
Dong et al. [32]. Briefly, Whatman filter paper was blended
with ultrapure water. Subsequently, concentrated sulfuric
acid (95-97%) was slowly added to the sample on ice
keeping the temperature below 30°C. Hydrolysis was
accomplished by stirring for 4.5 h at 50°C. After several
centrifugation steps, the resulting nanocrystals were di-
alyzed until the solution reached a neutral pH and then
subsequently sonicated for 4 h.

Tunicate cellulose nanocrystals (t-CNCs) were prepared
from the species Styela clava as previously described
[33,34]. After harvesting the sheaths of the animals, the
material was cleaned by stirring in potassium hydroxide at
80°C overnight. After rinsing and bleaching the material,
the above mentioned treatment with sulfuric acid for
¢-CNCs followed. After hydrolysis, the resulting mix-
ture was filtrated and dialyzed to a neutral pH. Both mate-
rials were freeze-dried for storage at room temperature
until required.

Preparation of c-CNCs and t-CNCs samples

To produce homogenous suspensions for ALICE experi-
ments, dry CNCs were weighed out to a concentration of
1 mg/mL and suspended in ultrapure water. Specifically,
pre-mixed solutions were sonicated for 1 h at a frequency of
37 kHz and 100% intensity in pulse mode in a flat bottom
glass flask (Duran® Schott, Germany) in an Elmasonic P30.H
sonication bath (Elma®, Hans Schmidbauer GmbH&CoKG,
Singen, Germany). The stock suspension of c-CNCs
and t-CNCs were diluted further with ultrapure water
to additional test concentrations of 0.5 and 0.1 mg/mL.

Characterisation of cellulose nanocrystal stock
suspensions

Elemental analysis

¢-CNC and t-CNC dry powders (2-5 mg) were measured
in a precision balance and placed into an universal “soft”
tin container (Thermo Scientific, USA). Investigation of

Page 7 of 12

the elemental composition of each sample was then
performed in a Flash 2000 Organic Elemental Analyzer
(Thermo Scientific, USA), equipped with copper oxide
filled CHNS/O columns. For analysis, only a CHNS col-
umn was used with helium as a carrier gas and oxygen as
an oxidizing agent. The Elemental Analyzer was calibrated
prior to each use by measuring three standards of the
same 2,5-bis(5-tert-butyl-2-benzo-oxazol-2-yl) thiophene
compound. Subsequently, samples of c- and t-CNCs
were measured and chromatograms were analysed by
the Eager Xperience computer software (Brechbiihler
AG, Switzerland).

Charge density determination

Surface charge density of cellulose nanocrystals was deter-
mined by conductometric titration, as previously reported
[33,49]. Cellulose nanocrystals (50 mg) were dispersed in
10 mL of 0.01 M HCI by sonication. Subsequently, the
suspension was titrated with 0.01 M NaOH recording
the conductivity of the suspension versus the volume of
NaOH added to the suspension. For conductivity mea-
surements, a Mettler Toledo SevenmultiTM pH-meter
connected with a conductivity measurement electrode
was used. To determine the charge density, the charge
titration graph was divided in three parts and a linear fit
was applied; (i) titration of excessive HCI, (ii) titration of
sulfate groups on the surface of CNCs and (iii) addition
of excess NaOH at the end of the titration. The quantity
of NaOH required to titrate the sulfate groups was calcu-
lated using the intercept points, from which the charge
density of CNCs was finally estimated using equation (1).

n(SO;)  ¢(NaOH) x V(NaOH)

m(CNCs) — m(CNC) (1)

[c(NaOH) = 0.01 mol/L (vide supra), V(NaOH) = volume
of NaOH required to titrate all sulfate groups, m(CNC) =
50 mg (vide supra)]

Stability

Based on the previous description by Lima and colleagues,
the translation and rotational diffusion coefficients of
¢-CNCs and t-CNCs were used to assess their stability
in water at a concentration of 1 mg/mL, measured using
depolarised dynamic light scattering (DDLS) [29]. Analysis
was performed immediately after preparation of the CNC
dispersion by ultra-sonication and after a 24 h resting-
period. DDLS was carried out using a Goniometer System
from LS Instruments (Switzerland) using a He-Ne laser as
the light source. A Glan-Thompson polarizer with an ex-
tinction ratio of >10™® was placed before the detector and
aligned perpendicular to the polarization of the incident
light. DDLS measurements were carried out at 20°C and
in the angle range of 30°-135°. The correlation function
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obtained at each angle was analysed via CONTIN. This
was then plotted against the square of the scattering angle,
allowing the translational diffusion co-efficient and the
rotational diffusional co-efficient to be obtained from
the gradient and intercept of the plot respectively.

Transmission electron microscopy

A protein rich, aqueous suspension of CNCs stock was
diluted to a final concentration of 1.5 pg/mL (c-CNCs)
and 2.5 pg/mL (t-CNCs). Of each sample, 4 pL was cast
onto a TEM copper grid (Plano, Germany) and air dried.
For characterisation of the deposited c-CNCs and t-CNCs
after nebulisation within the ALICE, pre-coated copper
grids were exposed to nebulisations of the lowest concen-
tration of CNCs leading to mostly individually deposited fi-
bres to avoid interaction on the TEM grid for analysis of
their dimensions (c-CNCs 0.5 and 0.1 mg/mL; t-CNCs
0.1 mg/mL). Representative images of both the stock solu-
tions and deposited samples were captured using a Hitachi
H-7100 (Hitachi, Japan) at 75 kV equipped with a Morada
11 MPix digital CCD camera (Olympus, Japan). The length
and width of both the ¢-CNCs and t-CNCs were subse-
quently analysed manually using Image] software [50].
Data presented is representative of 100 individual measure-
ments on at least 5 different micropgraphs taken from 3
individual nebulisations (n = 3) (mean + SD).

Nebulisation of CNCs with the “Air Liquid Interface Cell
Exposure System”

Nebulisation procedure

The “Air Liquid Interface Cell Exposure System” (ALICE)
has been described previously by Lenz et al [16]. The
aerosol is generated into the exposure chamber by a
perforated vibrating membrane nebuliser (customised
eFlow nebuliser system, PARI Pharma GmbH, Germany)
[51]. For each nebulisation 1 mL of suspension was used
with ranging CNC concentrations of 0.1, 0.5 and 1 mg/mL
CNCs with 500 pM NaCl (NAAPREP® physiological
saline, GlaxoSmithKline, France) respectively. Samples
were added immediately prior to nebulisation. NaCl in
the respective concentration served as a control exposure.

Video of nebulisation
A representative visualisation of nebulisation (~15 min)
with 0.5 mg/mL t-CNCs in 500 pM NaCl is shown in
the Additional file 2.

Quartz crystal microbalance

As an integrated part of the ALICE, the quantification of
deposited material was monitored by a quartz crystal
microbalance (QCM, detection limit 90 ng/cm?, AT-cut
quartz, 5 MHz resonance frequency, Stanford Research
Systems, USA). After each complete nebulisation process
the QCM was removed from the chamber and air dried
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to remove residual water [16]. Due to the settling of ma-
terial onto the QCM, the frequency of the crystal changes
(AF), which is calculated from the recorded frequency values
before each nebulisation (baseline frequency, ~5 MHz) and
after deposition of material (<5 MHz; equation (2)). This AF
value (Hz) is converted to deposited mass per area (pg/cmz)
as described in Lenz et al. [16].

AF = Fbaseline_Fdeposited (2)
AF
Am =
" 566

Anthrone assay

In addition to the QCM, to quantify the deposited mass
of CNCs from the ALICE, a colorimetric method for the
detection of polysaccharides was adapted from Upde-
graff et al. [30]. This assay also allowed the investigation
of the spatial distribution of deposited CNCs. In each
well of a 6-well plate, 700 uL of water was exposed to
nebulisations of 1 mL of 0.1, 0.5 and 1 mg/mL with 500 uM
NaCl of suspended c-CNCs or t-CNCs, respectively. From
each well, 500 pL was transferred into sample tubes. Aside,
a two-fold dilution series from 0.5 mg/mL to 0.016 mg/mL,
including a blank value, were prepared from the stock
suspensions. All samples were shaken on ice with 1 mL
of 0.1% anthrone reagent (Fluorescent Brightener 28,
Merck, Germany) in concentrated sulfuric acid (95-97%,
Merck, Germany). After 16 min incubation at 100°C the
mixtures were cooled for at least 10 min. Triplicates of
200 pL of each sample were transferred in a flat bottom 96
well plate (TPP Techno Plastic Products AG, Switzerland).
The samples were analysed by a plate reader (Benchmark
Plus, BioRad, USA) at a 610 nm excitation. The results are
represented as mass per area (cm?).

Endotoxin content

Endotoxin content of each CNC and DQ12 suspension
was assessed after nebulisation of 0.1, 0.5 and 1 mg/mL of
suspended c-CNCs or t-CNCs or 0.1 mg/mL DQ12 upon
1 mL of water within 6-well plate inserts (BD FalconTM
Cell Culture Inserts, 3 pm pores, BD USA). Solutions
were then collected in sample tubes and quantification
of their endotoxin content was performed using the
PYROGENTTM - 5000 Limulus Amebocyte Lysate assay
(Lonza, USA). A value <0.5 EU/mL for c-CNCs and DQ12
was detected. In the case of t-CNCs the assessed value was
0.9 EU/mL. Endotoxin content of the NP solutions was
assessed using the Limulus Amebocyte Lysate (LAL) test.
All analysis was performed courtesy of Dr. V. Huber at the
Institute of Pharmacy, Inselspital, Bern. LFA suspensions
have previously been reported to contain non-detectable
levels of LAL [5].
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Hazard assessment

Lung cell cultures

All in vitro exposure experiments were conducted with a
three dimensional triple cell co-culture model of the hu-
man epithelial airway barrier [52,53] as previously described
in detail by Lehmann et al. [54] with the addition of CD14"*
selection, further described by Steiner et al. [55]. Briefly,
this model is composed of alveolar epithelial cells (A549)
grown to confluence on BD Falcon cell culture inserts (high
pore density PET membranes, 4.2 cm” growth area, 3.0 um
pore size; Becton Dickinson AG, Switzerland). The model
is further supplemented on the apical side with human-
derived monocyte-derived macrophages (MDM) as well as
with dendritic cells (MDDC) on the baso-lateral side.

CNC exposures

Triple cell co-cultures were exposed to 1 mL aqueous
suspensions of 0.1, 0.5 and 1.0 mg/mL in 500 uM NaCl,
as well as a control exposure to NaCl only. Crystalline
quartz was further used as a positive particulate aerosol
control, specifically Dérentruper Quartz (DQ12; < 5 pm
[56]) at 0.1 mg/mL in 500 pM NaCl. DQ12 suspensions
were prepared by sonication in the same manner as
described for both CNC samples. Additionally, long fibre
amosite (LFA) was used in pseudo-ALI exposure experi-
ments as a positive fibrous control to show the sensitivity
of the co-culture to fibres in vitro [57,58]. The following
procedure is defined as pseudo-ALIL a volume of 100 pl of
a 0.05 mg/mL stock LFA suspension in supplemented
medium was added to the apical compartment of the
triple cell co-culture model at the ALIL This methodology
was used due to the fact that LFA suspensions are
highly unstable and hence unsuitable for nebulisation.
Nebulisations in the ALICE should be performed with
stable fibre dispersions to account for controllability
in all aspects. After exposure, a 24 h post-incubation
period at 37°C, 5% CO, followed prior to sampling for
biochemical and microscopy analyses. Samples were either
removed from the lower compartment of the exposed cells
(i.e. for cytotoxicity and (pro-)inflammatory response
assessment) or in combination with the cells from the
insert (investigation of oxidative stress status of the cell
cultures) and stored as per the diagnostic kit instructions
until analysis could occur.

Cytotoxicity

To measure cytotoxicity, the release of the intracellular
enzyme lactate dehydrogenase (LDH), indicative of cell
membrane damage, was assessed by the LDH cytotoxicity
detection kit (Roche Applied Science, Mannheim, Germany)
according to the manufacturer’s guidelines. The test
was conducted in triplicates and evaluated in comparison
to the negative control. As a positive control, co-cultures
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were treated with 100 pl of 0.2% Triton X-100 in H,O on
the apical side and incubated for 24 h at 37°C, 5% CO..

Chemokine/Cytokine release

The (pro)-inflammatory response was investigated by
quantifying the mediators tumor necrosis factor a (TNF-a)
and interleukin 8 (IL-8) using the DuoSet ELISA Develop-
ment Kit (R&D Systems) according to the manufacturer’s
protocol. Lipopolysaccharide (LPS from Pseudomonas
aeruginosa at 1 pg/mL) applied as 100 pl solution on the
apical side of the co-cultures served as the positive control
for TNF-a and IL-8 induction.

Oxidative stress

The total amount of reduced glutathione (GSH) in sam-
ples was measured and quantified using the glutathione
assay kit (Cayman Chemical Company, Ann Arbor, USA)
following the manufacturer’s guidelines. Concentrations of
GSH are reported relative to the total amount of protein
of each corresponding sample. This was quantified by the
Pierce bicinchoninic acid (BCA) Protein Assay kit (Pierce
Protein research Products, Thermo Scientific, Rockford,
USA) according to the manufacturer’s instructions. Values
are presented relative to the negative control.

Confocal laser scanning microscopy

After the post-incubation of 24 h, triple cell co-cultures
were fixed for 15 min with 3% paraformaldehyde in phos-
phate buffered saline (PBS) at room temperature and then
transferred to 0.1 M glycine in PBS for 10 min, or stored at
4°C. To permeabilise the cell membrane, cells were washed
three times in PBS and subsequently treated with 0.2% Tri-
ton X-100 in PBS for 15 min. The actin cytoskeleton and
the DNA of all cells were stained with rhodamine phal-
loidin (R-415; Molecular Probes, Life Technologies Europe
B.V., Zug, Switzerland) in a 1:100 dilution and 4’',6-
diamidin-2-phenylindol (DAPI) at 1 pg/mL in 0.3% Triton
X-100 in PBS, respectively. For microscopy, membranes
were embedded in Glycergel (DAKO Schweiz AG, Baar,
Switzerland). Visualisation of the samples was conducted
with an inverted Zeiss confocal laser scanning microscope
710 (LSM, Axio Observer.Z1). Representative images (z-
stacks) were recorded at 5 independent fields of view for
each sample. Images were further processed using the 3D
reconstruction software IMARIS (Bitplane AG, Zurich,
Switzerland).

Data analysis

All data is presented as the mean + standard error of the
mean (SEM), deriving from three individual experiments
for each material (c-CNCs, t-CNCs) (n = 3) unless other-
wise stated. Statistics were conducted using GraphPad
Prism 6 (GraphPad Software Inc., La Jolla, USA). Separate
two-way ANOVAs were performed comparing effects of
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concentration and material, with either Dunnett’s (concen-
tration) or Sirdak’s (material) post-hoc tests, respectively.
Separate one-tailed ratio or non-ratio (TBHP values for
GSH data only) paired ¢-tests were also performed for
DQI12, LFA and LPS against negative control values. Data
was considered significant if p < 0.05.

Additional files

Additional file 1: Figure S1. Digital photographs illustrating the stability
of CNC suspensions (1 mg/mL) after 2 weeks at room temperature. (a) c-CNCs,
(b) t-CNCs. (I) suspensions by mixing the powder, (Il) sonication for 10 min, (Ill)
sonication for 1 h and (IV) sonication for 1 h and addition of 500 uM NacCl.

Additional file 2: Video file - Nebulisation of t-CNCs with the
ALICE system.

Additional file 3: Table S1. Output rates (s) of the nebuliser depending
on material and concentration (n=13-30+ SD).

Additional file 4: Figure S2. Deposited CNCs. Transmission electron
microscopy images of 0.1 and 1 mg/mL nebulised c-CNCs (a, b) and t-CNCs
(c, d) deposited on pre-coated, protein rich copper grids exposed in the
ALICE. Scale bars represent T um.

Additional file 5: Figure S3. Spatial distribution of deposited c-CNCs
and t-CNCs after nebulisation. The total deposition within each well of a
6 -well plate referring to the nebulised concentrations of 0.1, 0.5 and

1 mg/mL for c-CNCs () and t-CNCs (=), respectively. Data is presented
as the sum of each mean of three nebulisations. Transmission electron
microscopy images of 0.1 and 1 mg/mL nebulised c-CNCs (a, b) and t-CNCs
(c, d) deposited on pre-coated, protein rich copper grids exposed in the
ALICE. Scale bars represent 1 um.

Additional file 6: Figure S4. Cytotoxicity of CNCs. Lactate dehydrogenase
(LDH) release after exposure to c-CNCs (black) or t-CNCs (grey) to the three
test concentrations. The dashed line (—) represents the level of the negative
control. Data is presented as the fold increase relative to the negative control.

Additional file 7: Figure S5. Cell morphology following CNC, DQ12 and
LFA exposures. Confocal laser scanning microscopy images visualising the
actin cytoskeleton (red) and the nuclei (cyan) of the in vitro triple cell
co-culture model exposed to 0.14 and 0.81 ug/cm2 ¢c-CNGs (a, b) or t-CNCs
(c, d). Furthermore, cell cultures exposed to 0.23 ug/cm?® DQ12 via the ALICE
(e) and 100 pl of 0.05 mg/mL LFA (f) via pseudo-ALl are shown. Yellow
arrows indicate cells undergoing mitosis. Scale bars represent 30 um.
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