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Controlled human exposure to diesel sl

exhaust: results illuminate health effects
of traffic-related air pollution and inform future
directions

Erin Long' and Christopher Carlsten?”

Abstract

Air pollution is an issue of increasing interest due to its globally relevant impacts on morbidity and mortality. Con-
trolled human exposure (CHE) studies are often employed to investigate the impacts of pollution on human health,
with diesel exhaust (DE) commonly used as a surrogate of traffic related air pollution (TRAP). This paper will review the
results derived from 104 publications of CHE to DE (CHE-DE) with respect to health outcomes. CHE-DE studies have
provided mechanistic evidence supporting TRAP's detrimental effects on related to the cardiovascular system (e.g.,
vasomotor dysfunction, inhibition of fibrinolysis, and impaired cardiac function) and respiratory system (e.g., airway
inflammation, increased airway responsiveness, and clinical symptoms of asthma). Oxidative stress is thought to be
the primary mechanism of TRAP-induced effects and has been supported by several CHE-DE studies. A historical limi-
tation of some air pollution research is consideration of TRAP (or its components) in isolation, limiting insight into the
interactions between TRAP and other environmental factors often encountered in tandem. CHE-DE studies can help
to shed light on complex conditions, and several have included co-exposure to common elements such as allergens,
ozone, and activity level. The ability of filters to mitigate the adverse effects of DE, by limiting exposure to the particu-
late fraction of polluted aerosols, has also been examined. While various biomarkers of DE exposure have been evalu-
ated in CHE-DE studies, a definitive such endpoint has yet to be identified. In spite of the above advantages, this para-
digm for TRAP is constrained to acute exposures and can only be indirectly applied to chronic exposures, despite the
critical real-world impact of living long-term with TRAP. Those with significant medical conditions are often excluded
from CHE-DE studies and so results derived from healthy individuals may not apply to more susceptible populations
whose further study is needed to avoid potentially misleading conclusions. In spite of limitations, the contributions of
CHE-DE studies have greatly advanced current understanding of the health impacts associated with TRAP exposure,
especially regarding mechanisms therein, with important implications for regulation and policy.
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Background

Air pollution, one of the leading causes of death world-
wide, is linked to an estimated 7 million deaths per year
[1]. Numerous adverse health outcomes are associated
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generate pollution through industrial sources, vehicles,
and household energy consumption. While agencies such
as the World Health Organization (WHO) [4, 5] and the
US Environmental Protection Agency [6] have set stand-
ards for air quality, in 2019 over 90% of the world’s popu-
lation lived in regions with pollutant levels above 2005
WHO air quality standards [4]. Traffic related air pollu-
tion (TRAP) constitutes a substantial portion of air pol-
lution globally, with a significant source of TRAP being
diesel engines, used in vehicles such as trucks, buses,
boats, cars, vans, and trains.

The health effects of diesel exhaust (DE) are commonly
investigated in controlled human exposure (CHE) stud-
ies. In this experimental design, participants are exposed
to a known quantity of pollutant under controlled con-
ditions, typically inside a specialized exposure chamber.
For CHE to DE (CHE-DE) studies, DE exposure is typi-
cally quantified by the concentration of particulate mat-
ter (PM) with diameter less than 2.5 pm (PM, ;) or, less
frequently, 10 um (PM,,) as these are common PM met-
rics linked in voluminous epidemiological studies to date
[7]. In addition to PM, DE is composed of gases, notably
nitrogen dioxide (NO,), carbon monoxide (CO), and gas-
eous hydrocarbons [8] which are often measured but not
titrated as the primary exposure metric in these studies.
CHE-DE are valuable for studying the acute effects of DE
exposure due to their ability to control exposure dura-
tion, PM concentration, and other exposure characteris-
tics such as humidity and temperature. Furthermore, the
use of individual participants as their own control, given
the crossover design, is a powerful factor in effectively
eliminating confounding factors that may vex other study
designs. This crossover design also facilitates clear statis-
tical analysis of such variables (sex, age, baseline health-
related phenotypic characteristics, host genotype, etc.) as
potential modifiers of the primary effect of DE across a
range of endpoints. The design of CHE-DE experiments
is conducive to analysis of wide variety of endpoints
derived from blood, urine, or airway samples, or in terms
of a range of physiologic parameters derived from respir-
atory or cardiovascular outputs, or from repeated admin-
istration of questionnaires.

These CHE-DE studies have investigated a broad range
of health outcomes, from cardiovascular effects such
as vasomotor function and thrombosis, to pulmonary
effects including inflammation and lung function. Mech-
anisms of DE-associated health effects on the genetic,
epigenetic, and biochemical levels have also been stud-
ied in CHE-DE papers. As the set-up of CHE-DE stud-
ies makes it possible to control concurrent exposures,
many papers have investigated the influence of co-expo-
sures such as ozone (O;) and allergens on the impact of
DE inhalation. While findings from CHE-DE studies
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have been previously reviewed [9-11] the literature with
respect to CHE-DE has grown profoundly in recent years
and continues to do so. Thus, the focus of this paper is
to provide a broad, updated review of the health-related
results gleaned from this body of literature.

Methods

A literature search was conducted using the PubMed and
Web of Science databases. The keyword “diesel exhaust”
or “was included in all search queries, in combination
with “controlled human exposure’, “human exposure’,
or “exposure” (e.g., “diesel exhaust” AND “human expo-
sure”). Eligible studies must have exposed participants
to a controlled quantity of DE via inhalation and been
published in December 2020 or earlier. We excluded let-
ters, abstracts, and academic theses. The reference lists
of included articles as well as the Clinicaltrials.gov regis-
tration page for publications that reported a clinical trial
number were also searched for eligible studies. Through
this process, we identified 104 publications eligible for
review. The methodology of each paper, such as the DE
concentration, gaseous composition, exposure condi-
tions, and exposure durations is reviewed in detail in a
separate companion paper currently under review. Main
findings with respect to health outcomes were extracted
and summarized in a table together with brief details of
study methodology (PM concentration(s) of DE expo-
sures, concurrent exposures, and participant characteris-
tics). Based on their main findings, eligible publications
were then categorized by a primary topic: oxidative stress
and antioxidants, systemic inflammation, respiratory,
cardiovascular, neurological, exercise, co-exposures, fil-
tered DE, markers and quantification of DE exposure,
and other. Detailed evaluation of each paper was then
conducted to synthesize this review.

Results

Main health outcomes of the 104 reviewed publications
along with an abbreviated description of study meth-
odology are outlined in Table 1. 24 studies included co-
exposure to DE and additional agents such as allergens (6
studies), antioxidants (5 studies), ozone (3 studies), and
various other agents. 46 studies included healthy partici-
pants only, 19 studies included participants with asthma
or atopy, 7 studies included participants with metabolic
syndrome, and 7 studies included participants with other
morbidities such as heart failure [94, 95], COPD [26, 35],
and coronary artery disease [51, 59, 69]. Further details of
study methodology can be found in a separate compan-
ion paper which is currently under review. With respect
to the primary category of health outcomes reported, 9
publications reported oxidative stress outcomes, 3 pub-
lications reported systemic inflammation outcomes, 25
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publications reported respiratory outcomes, 23 publica-
tions reported cardiovascular outcomes, 2 publications
reported neurological outcomes, 8 publications reported
exercise outcomes, 12 publications reported co-exposure
outcomes, 7 publications reported filtered DE outcomes,
and 15 publications reported outcomes that did not fall
under any of the above categories. Fig. 1 provides a brief
summary of all health outcomes in the reviewed articles.

Oxidative stress outcomes

Diesel exhaust exposure induces oxidative stress

Robust evidence from CHE-DE studies supports oxida-
tive stress as a mechanism of DE-associated effects. DE
exposure at 300 pg/m® PM,, has been shown to induce
activation and nuclear translocation of factors involved
in response to oxidative stress, such as nuclear fac-
tor (NF)-xB (p=0.02), as well as the mitogen-activated
protein kinases p38 (p=0.01) and JNK (p=0.04), in the
bronchial epithelium of healthy participants [18]. Other
studies have demonstrated changes in gene expression
and DNA methylation linked to oxidative stress pathways
in peripheral blood mononuclear cells after DE exposure
[15, 21].

Studies that demonstrate enhanced effects amongst
those with variants of genes of the glutathione-s-trans-
ferase (GST) family, and others related to oxidative stress
metabolism, further support the role of oxidative stress

- Increases pulmonary
inflammation in
healthy subjects but
not asthmatics

- Increases airway
resistance, obstruction,
and hyperresponsiveness
in asthmatics }"

- Increases markers of
oxidative stress

= - Adversely impacts
brain wave activity

- Increases blood pressure
- Affects autonomic
function of the heart

Particle depletion - -
- Impairs vasomotor function

mediated by oxidative stress
- Increases likelihood of thrombosis
- Decreases fibrinolytic capacity

- Mitigates cardiovascular effects

- Combination particle and
activated charcoal filter better
at reducing symptoms

- Can impair airway function
through unintended
increase in gases

- Antioxidant supplementation
may mitigate adverse effects

- Heterogeneity in endogenous
antioxidant response

- Generally not harmful ' 7/
fo exercise g % Antioxidants

- Allergen + DE: dysregulates lung immune response
. - Ozone + DE: synergistic effects on lung function and inflammation
- Influenza virus + DE: increases eosinophil activation in allergic rhinitics
» ﬁ - Traffic noise + DE: no effects on lung function or inflammation, noise
alone can increase markers of oxidative stress in DNA

Co-exposures

Fig. 1 Summary of health outcome findings from controlled human
exposure to diesel exhaust studies. DE diesel exhaust
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herein. Some CHE-DE studies estimate genetic suscepti-
bility to oxidative stress by stratifying participants based
on GSTMI1 status, a gene coding one of several glu-
tathione S-transferases involved in response to oxidative
stress [116]. The GSTM1 null phenotype is common and
is linked to decreased tolerance to oxidative stress as well
as increased lung inflammation [13, 83, 86, 116], though
this effect is not always observed [30]. Accordingly, there
is evidence from CHE-DE studies that individuals with
variant GST-family genotypes are more susceptibile to
adverse effects of DE exposure [30], though this area of
the literature is not entirely consistent and further inves-
tigation is necessary.

Potential benefit of supplemental and endogenous
antioxidants

The potential of exogenous antioxidants, as supplements,
in reducing the harmful effects of DE inhalation has been
evaluated in CHE-DE studies as well. As noted above, in
participants with baseline airway hyperresponsiveness,
exposure to PM, at 300 pg/m? (subsequently within
this review, this will be abbreviated simply to the mass
concentration, e.g. DE300 unless otherwise indicated)
increased this hyperresponsiveness, and N-acetylcysteine
supplementation for 6 days prior to DE exposure elimi-
nated this effect [13]. Another analysis from this study
showed that antioxidant supplementation attenuated
DE-induced changes in blood miRNA and associated
oxidative stress genes, further implicating such stress as
a mechanism for the effects of DE [14]. However, other
studies have failed to demonstrate a protective effect of
antioxidant supplementation. Another study found that
supplementation with N-acetylcysteine and ascorbate
prior to DE300 exposure did not abrogate DE-induced
changes in markers of oxidative stress [12] and pre-treat-
ment with antioxidant in a separate study was associated
with enhancement of DE-induced vasoconstriction [50].
Therefore, while antioxidant supplementation is a rela-
tively convenient and low-cost intervention, its ability to
mitigate the adverse effects of DE has has not been con-
sistently validated in CHE-DE studies [117]. It is likely
that the uncertainty therein relates to the specific anti-
oxidants, their administration (timing and dose), the host
phenotype, and the pollution exposure context, amongst
other factors.

The ability of endogenous antioxidants to moderate
oxidative stress has also been investigated in a CHE-DE
study. In healthy participants exposed to DE at 100 pg/m?
PM,,, the endogenous antioxidants ascorbate, urate, and
reduced glutathione in the bronchial and nasal airways
were not depleted; rather airway reduced glutathione lev-
els were instead elevated (nasal lavage p <0.05, bronchial
wash p =0.004) while markers of inflammation were not,
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suggesting endogenous antioxidant systems in healthy
populations may have been mobilized to sufficiently
combat DE-associated oxidative stress [19]. Interestingly,
a study of participants with metabolic syndrome did not
find evidence of oxidative stress or systemic antioxidant
responses after exposure to DE200, perhaps as a result of
adaptations to chronic oxidative challenge [16]. This het-
erogeneity prompts further investigation of the effects of
anti-oxidants, whether endogenous or exogenously sup-
plied, including potential modification of effect by rel-
evant gene variants. Furthermore, inference from these
studies requires careful attention to the overall methods
and results for any given investigation.

Diesel exhaust induces systemic inflammation

CHE-DE studies have reported robust links between
acute DE exposure and systemic inflammation. DE expo-
sure at 276 pg/m® PM, was shown to increase periph-
eral blood leukocyte count (increase of 0.16+1.01 x 10°
cells/L from pre-exposure count) and monocyte count
(increase of 0.0140.10x10° cells/L from pre-expo-
sure count) compared to FA (p=0.007 and p=0.017
respectively) [22]. The same study also reported a trend
towards increased IL-6 after DE exposure (increase of
0.12+£0.78 pg/mL compared to pre-exposure, p=0.066
compared to FA) [22]. A 1999 study of healthy volunteers
reported significant increases in neutrophil (p=0.04)
and platelets (p=0.02) counts in peripheral blood with
DE exposure compared to FA, though HLA-DR+lym-
phocyte count was decreased (p=0.02) [47]. In a 2012
study, plasma obtained from healthy volunteers exposed
to DE at 100 pg/m® was incubated with human endothe-
lial cells, and this demonstrated increased endothelial
cell expression of the inflammatory marker vascular cell
adhesion molecule-1 by 20% (p<0.05) [23]. Notably,
one CHE-DE study suggests that COPD patients may be
more susceptible to the pro-inflammatory effects of DE
exposure [26]. In this study, markers of neutrophil activa-
tion such as CD16, CXCR?2, as well as percentage of acti-
vated neutrophils (+12.2% change) in peripheral blood
were increased in COPD patients compared to healthy
subjects after DE exposure (p =0.006, p =0.002, p =0.046
respectively) [26]. CHE-DE studies have also described
DE-induced changes in DNA methylation [21] and gene
expression [17] within inflammatory pathways. In sum,
CHE-DE studies provide compelling evidence of systemic
pro-inflammatory effects from acute DE exposure.

Few controlled human exposure studies to diesel exhaust
examine genotoxicity

The genotoxic effects of DE and its components have
been extensively investigated in animal models, in vitro
experiments, and observational studies [118-124]. A
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2015 CHE-DE study by Hemmingsen and colleagues
examined genotoxicity-related outcomes; while there
was no statistically appreciable effect of DE exposure on
markers of DNA damage, they did report a significant
increase (p<0.05) in the level of hOGG1-sensitive sites
with exposure to 75 dB of traffic noise, suggesting a geno-
toxic effect of traffic noise [91]. Currently, there is pau-
city of CHE-DE studies pertaining to genotoxicity of DE
exposure (Table 1). Future CHE-DE studies investigating
this topic would greatly strengthen the pre-existing lit-
erature, and serve to establish a stronger link between DE
exposure and genotoxicity as a mechanism of DE-associ-
ated health effects.

Respiratory outcomes

Diesel exhaust increases pulmonary inflammation in healthy
subjects

TRAP exposure has been associated with increased
asthma exacerbations [125, 126], development of chronic
obstructive pulmonary disease (COPD) [127-130], and
symptoms of respiratory irritation [131-133]. CHE-DE
studies published in the early 2000’s have consistently
demonstrated elevations in biomarkers of pulmonary
inflammation after DE exposure, providing an expla-
nation for these observations. DE exposure at concen-
trations of 200 to 300 pg/m* PM,, have been shown to
acutely increase inflammatory markers such as inter-
leukin (IL)-6, IL-8, IL-13, methylhistamine, neutrophils,
and myeloperoxidase (MPO) in the respiratory tract of
healthy subjects [41, 44—46]. Interestingly, pulmonary
inflammation induced by DE in asthmatics is less clear.
A 2011 study found that exposure to DE at 100 pg/m3
PM,, increased neutrophils (p=0.01), IL-6 (p=0.03),
and MPO (p=0.04) in bronchial wash samples from
healthy participants while these markers were not ele-
vated in asthmatic subjects [36]. Another study compar-
ing healthy versus asthmatic volunteers reported similar
results, with significantly increased airway neutrophils
(p<0.05), lymphocytes (p<0.05), and IL-8 (p<0.05) after
DE exposure at 100 pug/m?® PM,, in only the healthy group
[42]. While the asthmatic subjects in both studies had
significantly elevated levels of eosinophils (p <0.001 [42];
p=0.013 [36]) and mast cells (p <0.05 [42]; p<0.001 [36])
compared to their healthy controls at baseline or after
FA exposure, DE exposure did not significantly increase
these markers of allergic inflammation in the asthmatic
groups [36, 42].

Diesel exhaust worsens asthmatic airway function

Though inflammatory markers are not consistently
increased by controlled DE in asthmatic subjects, CHE-
DE does transiently worsen relevant asthma physiology.
Exposure to DE300 has been shown to increase airway
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hyperreactivity (methacholine PC,;=14.9 mg/mL after
DE compared to 19.7 mg/mL after FA, p=0.012) and
obstruction (3.3% decrease in FEV;% after DE com-
pared to 3.1% increase after FA at 24 h post exposure,
p=0.043) in subjects with asthma [34]. Similarly, in a
different study of asthmatics, inhalation of DE at 300 pg/
m® PM,, increased both airway hyperreactivity (metha-
choline PC,,=1.77+1.35 mg/mL (DE) compared
to 3.47+1.36 mg/mL (FA), p<0.001) and resistance
(p=0.004) [43]. Increased airway resistance has also been
reported with a lower level of DE exposure, at 100 pg/
m® PM;, (4.1% increase in healthy subjects (»<0.01 DE
compared to FA), 6.5% increase in asthmatics (p<0.01
DE compared to FA)) [42]. One proposed mechanism as
to how DE exposure impacts the lungs of asthmatics is
through oxidative stress. In one study of 16 participants
with mild to moderate asthma, nitrite in exhaled breath
condensate was increased immediately after DE expo-
sure (p=0.052) [34]. A separate study found that subjects
with baseline airway hyperreactivity had a 42% increase
in airway responsiveness after DE exposure compared to
FA exposure (p=0.03), with this increase abated by prior
anti-oxidant supplementation [13]. Interestingly, this
same study also showed that anti-oxidant supplementa-
tion in individuals with airway hyper-reactivity reduced
baseline airway responsiveness by 20% (p=0.001) [13],
further implicating the role of oxidative stress. Other
mechanistic insight has come through focus on under-
emphasized pathways [29, 134] and by interrogating the
role of epigenetics on lung function [24]. However, the
exact mechanisms underlying the impact of DE on asth-
matic lungs is still poorly understood and elucidating
the differential pulmonary effects of DE is an important
focus for further study.

Cardiovascular outcomes

Diesel exhaust exposure impairs vasomotor function
Exposure to air pollution has been consistently associ-
ated with cardiovascular morbidity and mortality [3,
135-137]. One pathophysiological mechanism thought
to underlie this association is the impairment of vaso-
motor function. Indeed, multiple CHE-DE studies have
demonstrated a link between DE exposure and vascu-
lar dysfunction. A study of 30 healthy male participants
showed that 1 h exposure to DE, titrated to a nominal
concentration of DE300 significantly impaired vasodila-
tion in response to bradykinin (p<0.05), acetylcholine
(p<0.05), and sodium nitroprusside (p<0.001) [71], with
similar results observed at DE250 in a different study
[60]. Two studies that assessed brachial artery diameter
reported acute vasoconstriction, a corollary of impaired
dilation, after DE200 (decrease in diameter with DE ver-
sus FA=0.11 mm, p=0.01 [67] and 0.09 mm, p=0.03
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[50]) [50, 67]. Another study demonstrated impairment
of vasodilation at 24 h after DE exposure, implying this
effect may persist even into the day following inhalation
[70]. Dysfunction of the endothelial nitric oxide (NO)
pathway has been implicated in DE-associated vascular
dysfunction. In a study with 12 healthy volunteers, DE
exposure reduced vasodilation in response to acetylcho-
line (p<0.01) but not sodium nitroprusside, suggesting
DE inhalation only impairs endothelium-dependent vas-
odilation [55]. The study further demonstrated a correla-
tion between the impairment of vasomotor function and
production of reactive oxygen species (ROS), indicating
these effects of DE may be mediated by oxidative stress
[55]. In another study, DE inhalation increased plasma
nitrite concentration (68 48 nmol/L after DE versus
41432 nmol/L after FA, p=0.006) in healthy volun-
teers, suggesting increased NO generation as a potential
physiological mechanism to the vasoconstrictive effect
of DE [54]. The same study also demonstrated a greater
increase in blood pressure (p =0.048) and central arterial
stiffness (p =0.007) with DE inhalation compared to fil-
tered air (FA) in the presence of systemic NO synthase
inhibition, implying that while DE exposure increases
NO generation, this is offset by a greater increase in NO
consumption leading to an overall reduction in NO bio-
availability [54]. The mechanism of reduced NO bio-
availability has been further implicated in animal models
[138] as well as other CHE-DE studies [61]. While there
is strong evidence that DE exerts its vasomotor effects via
the NO pathway, the exact mechanism and the potential
involvement of other mediators remains uncertain.

Diesel exhaust exposure increases likelihood of thrombosis
and decreases fibrinolytic capacity

Another mechanism through which DE increases sus-
ceptibility to cardiovascular disease is through its effects
on fibrinolysis and thrombosis. DE has been shown to
suppress bradykinin-induced release of plasma tissue
plasminogen activator in healthy volunteers at DE250
and DE300 [60, 71], suggesting DE inhalation impairs
endogenous fibrinolytic function. DE exposure has been
linked to increased propensity of thrombus formation, as
reported in an ex vivo study conducted with blood drawn
from healthy volunteers exposed to DE at 350 pg/m? [65].
However, a different study that also involved healthy
participants found no difference in thrombotic markers
such as D-dimer, von Willebrand factor (vWF), plate-
lets, and plasminogen activator inhibitor-1 (PAI-1) after
exposure to DE100 or DE200 [68]. This discrepancy may
be due to sample size, as the authors noted their results
trended in the expected direction but failed to meet sta-
tistical significance [68]. Another reason could be the
DE concentration was insufficient to induce a significant
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prothrombotic effect, as the Lucking study [65] used
a concentration of DE at 350 pg/m>. Interestingly, in a
similar study conducted in volunteers with metabolic
syndrome, hypothesized to be more susceptible to car-
diovascular risk, again no significant increase in D-dimer,
vWE, and PAI-1 was observed after DE100 and DE200
exposure [64]. In these studies from Seattle, it may be
that the biomarker approach was insufficiently sensi-
tive, relative to the Badimon chamber technique used
routinely in Umea, to thrombotic phenomena. Though
there seems to be a general consensus that DE inhalation
is prothrombotic, this effect has most observable at DE
concentrations at or above 250 pg/m?® and further mecha-
nistic detail remains to be elucidated.

Diesel exhaust adversely affects heart rate variability

and blood pressure

CHE-DE studies have also investigated the effects of
DE exposure on measures of cardiac function. A paper
by Langrish et al. [51] using data pooled from multi-
ple studies, including a number of CHE-DE studies [58,
60, 69, 71, 73], reported no significant increase in the
short term risk of arrhythmia after acute DE exposure
in healthy individuals or those with coronary artery dis-
ease [51]. CHE-DE studies have also examined other car-
diac parameters such as heart rate and blood pressure. A
2014 study found that 2 h exposure to DE at 300 pg/m?
increased diastolic blood pressure (DBP) by an average
of 5 mmHg (p =0.04), a change that was less pronounced
at DE at 100 pg/m® and 200 pg/m? [52]. DE inhalation
at 300 pg/m> also decreased indices of the frequency
domain of heart rate variability (HRV), a marker of car-
diac autonomic function [52]. Of note, the 6 healthy vol-
unteers who participated in this study were null for the
GSTM1 gene, a deletion that is associated with increased
susceptibility to oxidative stress [52]. Another study
involving both healthy and participants with metabolic
syndrome found no consistent effect of DE exposure on
heart rate variability at DE100 and DE200 [66], perhaps
due to the lower concentrations used. A different study
found that exposure to DE200 did not significantly affect
DBP but did increase systolic blood pressure (SBP) by
an average of 4.4 mmHg (95% CI: 1.1, 7.7, p=0.0009)
post-exposure [56]. This study, involving both healthy
and participants with metabolic syndrome, did not find
a significant effect on heart rate [56]. Observational study
designs have reported associations between TRAP expo-
sure and both increased blood pressure [139-141] and
changes in heart rate variability [142—144]. Though there
is a lack of concordance in the specific findings, CHE-DE
studies have overall demonstrated an adverse impact of
acute DE exposure on heart rate variability and blood
pressure.
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Limited evidence from controlled human exposures

to diesel exhaust exposure suggest adverse neurological
effects

The neurological effects of acute DE exposure have also
been explored in a 2008 CHE-DE study. 10 healthy vol-
unteers were exposed to DE at 300 pg/m?, with brain
activity monitored via electroencephalography (EEG)
during and one hour after the exposure [73]. The results
of the study demonstrated a significant increase in
median power frequency in the frontal cortex during DE
exposure compared to FA (p<0.05), with this elevation
attributed predominantly to increased fast wave activ-
ity (B2) [73]. Elevated B2 is associated with increased
cortical stress, and is often seen in patients with neuro-
logical and neuropsychological disorders such as post-
traumatic stress disorder, traumatic brain injury, and
headache [145, 146]. However, the implications of this
increased cortical activity on clinical outcomes such as
cognition or neurological disease are unclear. Epidemio-
logical studies, animal models, and in vitro experiments
have linked air pollution exposure to the development
of neurodegenerative diseases such as Alzheimer’s dis-
ease [147] and Parkinson’s disease [148, 149]. Long-
term exposure to air pollution has been also shown to
adversely impact cognitive performance on verbal and
math tests [150]. Children are believed to be particu-
larly susceptible to the cognitive consequences of air
pollution. Exposure to TRAP has been shown to nega-
tively impact neurobehavioural function in adolescents
[151] as well as cognitive development in children [152].
Pathways that have been proposed to mediate the neu-
rological impacts of DE exposure include neuroinflam-
mation and oxidative stress [148, 153], though the exact
mechanisms remain unclear. Cruts et al. [73] is the only
CHE-DE study to date that has clearly documented con-
cerning neurological impacts of DE exposure; another
performed has revealed some preliminarily reassur-
ing results [72, 111] but with major endpoints not yet
resulted in detail, precluding complete conclusions.
CHE-DE as a paradigm of TRAP exposure is a tool
that promises to elucidate not only the clinical effects
of DE on neurological function, but also the pathways
that mediate these outcomes such that observational
data would be given more credence. Given the paucity
of research in this area, and the massive public health
implications, future CHE-DE studies focus on neurolog-
ical effects of DE exposure is warranted.

Exercising during diesel exhaust exposure is generally

not harmful in healthy populations

Those living in areas with sub-optimal air quality are
often concerned about outdoor exercise due to the risk of
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breathing in larger quantities of pollutants. The majority
of CHE-DE studies have participants alternate between
rest and exercise during exposure, in order to simulate
real world variations in activity. Exercise is typically done
on a stationary bicycle with a modest target ventilation
rate. A smaller number of CHE-DE studies have spe-
cifically evaluated the effect of exercise during DE expo-
sure on health endpoints. In three papers from the same
group, 18 healthy male participants cycled for 30 min at
low or high intensity after inhalation of DE300 [76, 77].
While exposure to DE increased plasma NOx (nitrite and
nitrate) levels (p<0.05), this effect was not significantly
different between different exercise intensities [76]. Exer-
cise during DE exposure did not increase levels of adhe-
sion molecules or systemic inflammatory markers, nor
did it affect blood pressure or flow mediated dilation, a
measure of endothelial function [75, 76]. Furthermore,
the effects of exercise intensity on heart rate variation
and norepinephrine were not modulated by DE exposure
[77]. A separate study reported no significant difference
in parameters of micro- and macrovascular vasodila-
tion after exercise during DE300 exposure compared to
FA, suggesting that DE does not impair vascular effects
of exercise [74]. Data from observational literature sug-
gests the benefits of exercise typically outweigh the risks
of air pollution and that it may not be necessary for most
general populations to avoid exercising during periods
of increased air pollution except perhaps when extreme
[155-159]. However, some epidemiological studies have
reported benefits of physical activity are negated in pol-
luted regions, or even an overall adverse effect of exer-
cise in polluted environments [160—163]. Taken together,
results from CHE-DE and observational studies imply
exercise in areas of air pollution likely imparts beneficial
effects in general, however the detrimental impact of air
pollution may attenuate the health benefits of activity.

Co-exposures

The ability of CHE studies to precisely control exposure
conditions is a double-edged sword. While this facili-
tates casual relationships being inferred between focused
parameters and health endpoints, the tight elimination
of other environmental variables is scarcely encoun-
tered in ambient settings. It is common that people are
subject to TRAP while going about their daily activi-
ties, simultaneously experiencing many other types of
exposures, both airborne and not. One way CHE-DE
studies have attempted to remedy this issue is by intro-
ducing various co-exposures alongside DE. Examples of
these co-exposures include aeroallergens, ozone, noise
and viruses. These co-exposure studies help delineate
interactions between DE with other environmental fac-
tors while also enhancing the real-world relevance of
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CHE-DE exposures, although the full range of potential
co-exposure combinations can never be fully captured in
a laboratory-based algorithm [154].

Diesel exhaust magnifies allergenic effects

The relationship between allergens and TRAP exposure
is one of great interest, as both have the potential to exac-
erbate atopic airway disease and they occur frequently
together in many settings. Co-exposures to DE and
allergen have been investigated in several more recent
CHE-DE studies. In these experiments, participants are
first tested for sensitization to common environmental
allergens such as house dust mite, grasses, or birch. Par-
ticipants then undergo a DE or FA exposure, followed
by exposure to an allergen to which they demonstrate
being already sensitized (either by inhalation or, alter-
natively, by instillation of allergen or saline into different
lung segments via bronchoscopy, a technique known as
segmental allergen challenge). Exposure to allergen alone
in atopic subjects has been shown to increase airway
markers of allergic inflammation, including surfactant
protein D (SPD), MPO, and eosinophils, with an addi-
tive effect from DE on some but not all of these mark-
ers [30, 84]. DE and allergen co-exposure has also been
shown to increase non-allergic inflammatory markers
such as CD4 (p=0.035), IL-4 (p =0.034), and neutrophil
elastase (p=0.031) in submucosal tissue of atopic partici-
pants [31]. Inhalation of DE may also inhibit protective
responses to allergen-triggered phenomena in the lung.
In a 2020 study, atopic participants were exposed to aller-
gen alone, combination of DE and allergen, combination
of particle-depleted DE (PDDE) and allergen, and filtered
air control [25]. SPD, a protein that modulates pulmonary
immune responses, was increased in BAL samples com-
pared to FA-saline control following exposure to allergen
only (p=0.02) but not after exposure to combination DE
and allergen (p=0.19) [25]. Exposure to the combination
of PDDE and allergen restored the protective increase in
SPD (p=0.007), suggesting the PM fraction of DE was
responsible for suppressed SPD levels [25]. Interestingly,
there may be a complex gene-environment interaction
that mediates the effects of allergen and DE exposure.
A 2016 study found that individuals null for GSTTI,
encoding a glutathione S-transferase involved in mitigat-
ing oxidative stress, experienced a significantly greater
decrease in FEV, after co-exposure to DE and allergen
than those with normal GSTT1 (24.54+19.6% decrease
(GSTT1 null) compared to 9.24+7.3% decrease (normal
GSTTI), p=0.001) [86]. CHE-DE studies have also pro-
duced evidence that DE and allergen co-exposure often
uniquely affects lung gene expression, DNA methylation,
and secreted proteins [27, 82, 85], while also showing
how some pathways are less effected by the combination
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[28, 82, 164]. Given that TRAP and aeroallergens are
commonly encountered together in urban and suburban
environments, delineating the impacts of co-exposure is
a relevant and meaningful area of future research. This
is particularly important as evidence mounts for green-
ness as a health-enhancing exposure, as a major caveat
therein is the risk for worsening allergenic phenomena
when greenness including allergen-rich species in close
proximity to TRAP [165]. Species with lower allergenic
potential, such as flowering trees [166], are alternatives
that can be considered in green space planning, though
further investigation is needed to establish if there is
indeed a meaningful difference in health outcomes com-
pared with allergen-rich species.

Ozone and diesel exhaust have compounding effects

O, is a prevalent component of ambient air pollution
and has been shown to negatively impact the cardiovas-
cular and pulmonary systems [167, 168]. Given the near
ubiquity of both DE and Oj in the air we breathe, several
CHE-DE studies have investigated the complex interac-
tion between these two pollutants. DE and O; appear to
have compounding effects on airway inflammation. A
2008 paper reported increased bronchial wash neutrophil
(5.4 x 10* cells/L (DE and O,) versus 3.6 x 10* cells/L (FA
and O,), p =0.006) and macrophage (8.2 x 10* cells/L (DE
and O;) versus 7.1 x 10* cells/L (FA and 0,), p=0.046)
numbers in healthy volunteers exposed to DE at 300 pg/
m® PM,, followed by 0.2 ppm O,, compared to FA fol-
lowed by O4 [90]. An earlier paper from this group found
increased neutrophils and MPO in sputum samples with
combination DE and Oj versus combination DE and
FA (p<0.05 and<0.05 respectively) ([39]. A potentially
enhanced effect of DE and O; co-exposure on inflamma-
tory cytokines and white blood cell counts was noted by
a different study group as well [87]. With respect to lung
function, co-exposure to DE and O5 has been shown to
magnify decreases in FEV, induced by either exposure
alone (p=0.057 when comparing change in FEV; post
DE and O; co-exposure to sum of FEV, changes post
DE mono-exposure and post O; mono-exposure) [88].
Mechanistically, the effects of DE and O; may be medi-
ated through different pathways. Interestingly, exposure
to DE at 300 pg/m® PM,, but not 0.3 ppm O, has been
shown to increase fraction of exhaled nitric oxide (FeNO)
(p=0.01 for DE compared to FA), an indicator of airway
inflammation [89]. This may be due to FeNO’s reflection
of more eosinophilic inflammation (perhaps induced by
DE’s complex mixture including organic elements) while
ozone-induced inflammation is primarily neutrophilic.
Given the potent ability of CHE studies in investigat-
ing contributions of co-exposures, this study design has
contributed significantly to our understanding of the
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interplay between DE and O, whilst recognizing that the
laboratory setting imperfectly simulates related ambient
mixtures.

Limited evidence of interactions between diesel exhaust

and traffic noise

One CHE-DE study involved co-exposure to traffic noise,
with results reported in four of the presently reviewed
publications [22, 91, 103, 104]. Transportation-related
noise has been associated with cardiovascular disease
risk, though the mechanisms are poorly understood
[169]. In this CHE-DE study, healthy participants were
exposed to DE titrated to 300 pg/m® PM;, alongside
traffic noise at 48 or 75 dB [91]. Exposure to the higher
level of traffic noise, but not DE, was associated with sig-
nificantly increased signs of DNA damage in peripheral
blood mononuclear cells (p<0.05 effect of 75 dB traffic
noise) [91]. However, traffic noise did not modulate DE-
induced effects on peak expiratory flow and inflamma-
tory markers [22]. As such, evidence on the interaction
between DE and traffic noise remains limited.

Diesel exhaust may exacerbate allergic inflammation
induced by influenza virus

Two CHE-DE studies involved co-exposure to live atten-
uated influenza virus (LAIV) [92, 93]. Compared to FA,
acute exposure to DE at 100 pg/m?® prior to intranasal
administration of LAIV was shown to increase markers
of eosinophil activation (eotaxin-1, p=0.01; eosinophil
cationic protein, p <0.01) in subjects with allergic rhini-
tis, indicating DE may exacerbate LAIV-induced allergic
inflammation [93]. A follow up study produced similar
results with respect to eosinophil activation and also
presented evidence that this effect is mediated by natu-
ral killer (NK) cells [92]. DE was shown to significantly
decrease IP-10, a marker of NK cell activation (p<0.05
compared to baseline), suggesting DE reduces eosino-
phil clearance by NK cells [92]. These studies provide
novel insight into the interplay between DE, allergic
inflammation, and viral infection, demonstrating how
increasing complexity integrated into CHE studies can
contribute markedly to our understanding of the interac-
tion of TRAP with various environmental factors.

Use of particle filters may mitigate adverse effects of diesel
exhaust

Given the association of fine particulate matter with
negative health outcomes, the ability of particulate fil-
ters to mitigate the consequences of air pollution has
been widely studied. Several CHE-DE papers have found
promising data with regards to the beneficial impact of
such filters. For brevity, we will use PDDE (particle-
depleted DE) to refer to DE which has undergone particle
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filtration. The FILTER-HF trial investigated the impact
of a particle filter on various endpoints in 26 patients
with heart failure [94, 95]. Use of the filter reduced DE
concentration from DE325 to DE25 but did not affect
levels of gaseous DE components [94, 95]. Exposure to
unfiltered DE increased levels of B-type natriuretic pep-
tide (BNP) (47.0 pg/mL (FA) versus 66.5 pg/mL (unfil-
tered DE), p=0.004) and impaired endothelial function
(21% decrease in reactive hyperemia index (RHI) during
unfiltered DE exposure compared to FA, p=0.002), but
these effects were reduced with PDDE (BNP=66.5 pg/
mL (unfiltered DE) versus 44.0 pg/mL (PDDE), p=0.015;
20% increase in RHI during PDDE compared to unfil-
tered DE, p=0.019) [94]. During a modified version
of the 6-min walking test, exposure to unfiltered DE
adversely impacted markers of exercise tolerance, such
as 6-min walking distance (p=0.03), maximal oxygen
uptake (VO,) (»<0.001), and oxygen uptake per heart-
beat (O, pulse) (p<0.001) [95]. Use of the particle filter
was able to reverse some of these DE-induced changes
(p<0.001 (VO,) and p<0.001 (O, pulse) comparing
PDDE to unfiltered DE) [95]. Another study conducted
in healthy volunteers showed that filtration through a
particle trap was able to reduce the harmful effects of DE
inhalation on vasomotor function, thrombus formation,
and fibrinolysis (p=0.04, p=0.02, and p=0.03 respec-
tively, for PDDE versus unfiltered DE) [97]. However,
evidence from other CHE-DE studies serve as remind-
ers that the particulate portion of DE is not the only
mediator of adverse health effects. A 2019 study exposed
healthy volunteers to allergen in combination with unfil-
tered DE or PDDE [83]. The combination of PDDE and
allergen impaired lung function to a greater extent than
did unfiltered DE with allergen (7.5% greater decrease in
FEV, with PDDE and allergen compared to unfiltered DE
and allergen, p=0.047) [83]. Notably, the level of NO,
in PDDE exposure was greater than that of unfiltered
DE exposure (150 ppb compared to 53 ppb, p<0.0001),
implying the detrimental effect of particle filtration may
have been mediated by NO, enrichment known to occur
with some PM-reducing technologies [83].

CHE-DE studies involving activated charcoal filters
have attempted to address the additional benefit of con-
trolling the gaseous fraction of DE. In a 2014 study, 30
healthy subjects were exposed to unfiltered DE and DE
filtered through two different particle filters, including
one filter with an active charcoal component [96]. Lev-
els of PM,, were reduced by 47% using the particle filter
alone (p<0.001) and by 74% using the filter containing
active charcoal (p<0.001) [96]. The combination with
charcoal filter, but not the particle filter alone, reduced
the levels of NO, by 85% (p<0.001) and of hydrocar-
bon by 58% (p<0.001) compared to unfiltered DE [96].

Page 27 of 35

Participants reported fewer subjective symptoms after
exposure to DE run through the particle filter without
charcoal component compared to unfiltered DE; though
this was not statistically significant, symptom reduc-
tion in the active charcoal filter condition was significant
(p<0.05) compared to unfiltered DE) [96]. An earlier
CHE-DE study had also reported greater reduction in
symptoms with combination particle and charcoal filter
compared to particle filter alone [98]. Though particle fil-
ters alone seem to have some protective effects, the ben-
efits of filtration may be improved by adding an activated
charcoal component.

No reliable methods of quantifying personal diesel exhaust
exposure in controlled human exposure studies

Chambers used in CHE-DE are typically connected to a
host of instruments able to precisely measure airborne
concentrations of particulates and gaseous co-pollutants.
However, it is rather difficult to quantify exactly how
much DE is truly inhaled as this depends on a multi-
tude of participant-dependent factors such as variations
in respiratory rate and tidal volume (even when design
attempts to control and keep these consistent, due to
individual anatomy and other factors). Development of
methods to most accurately quantify personal exposure
to DE are ongoing, but several CHE-DE studies have
assessed the utility of specific biomarkers as surrogate
indicators of DE exposure, while recognizing that vari-
ability in individual factors related to metabolism makes
such markers imperfect proxies for proximal exposure. In
a preliminary study, the airborne concentrations of DE
constituents that can be found in biological fluids were
measured during exposure to DE100 [110]. Naphtha-
lene and phenanthrene, two polycyclic aromatic hydro-
carbons (PAHs), were identified as potential markers of
DE exposure and were further investigated in a follow
up study. The urinary concentrations of these two com-
pounds along with 12 other PAHs were measured prior
and after DE exposure ranging from DE106-DE276,
but none of these compounds were found to be a suit-
able biomarker [103]. Blood concentrations of plasma
PAHs from the Sobus et al. 2008 [110] study were visu-
alized using a heat map in a separate paper [115], dem-
onstrating a novel approach to displaying data generated
in CHE-DE studies. Another compound that has been
assessed for this purpose is 1-nitropyrene, a marker of
DE exposure that is excreted in urine as 1-aminopyrene
[108]. Urinary concentration of 1-aminopyrene in healthy
volunteers exposed to DE at 300 pg/m® PM,, increased
upon DE exposure [108]. However, the utility of this
marker is limited by a high degree of variability between
subjects [108], likely related to the aforementioned con-
straint (given inevitable co-exposures to other products
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of common combustion). While a consistent marker of
DE exposure has yet to be found, exploration of this area
should continue as identification of such a compound
would greatly benefit air pollution research.

Controlled human studies to diesel exhaust: limitations
and future directions
Though CHE-DE studies are important tools in research
aiming to assess health effects of TRAP, these experi-
ments carry an inherent set of limitations. As discussed
earlier, CHE studies are, by necessity, constrained envi-
ronments and thus unable to fully replicate the complex
co-exposures encountered in the real world. This is rem-
edied to some extent by the increasing sophistication
of co-exposures in CHE-DE studies, but the addition of
each additional exposure layer imposes further budget-
ary costs, participant burden, and analytical complex-
ity. CHE studies using ambient pollution [170-172] as
well as concentrated ambient particles [173-177] have
also been employed to better reflect the intricacies of
real world exposures. Another significant weakness of
CHE-DE studies is the inherent uncertainty in terms of
how the setting relates to the long-term effects of DE
exposure. While chronic effects are inevitably the result
of a series of acute exposures, the precise relationship
between the short and long terms therein is a complex
subject of ongoing investigation. Observational studies
have provided robust evidence for the detrimental effects
of chronic diesel exhaust exposure across multiple physi-
ological systems [178]. One important avenue therein is
to integrate or compare the results of CHE studies with
data obtained via observational methods, and examples
of this approach are emerging [179], albeit with method-
ological challenges that need further refinement.
Another noteworthy limitation is that the concentra-
tions of DE used in CHE-DE studies are typically on the
high end relative to real world exposures. This has typi-
cally been motivated by a desire to quantify significant
changes in endpoints within a relatively short amount
of time, by a need to induce an effect detectable beyond
the background exposure levels that participants will
routinely experience in daily life, and because a focus
on mechanistic insight typically justifies some excursion
from typical levels. Furthermore, it is logistically imprac-
tical and costly for CHE studies to bring participants in
for multiple low-level exposures over an extended period.
While the cohort and longitudinal designs often used in
studies of chronic TRAP exposure come with their own
set of advantages and disadvantages, the approach of
collating insight from various study designs—each with
their valuable angles of insight—remains the gold stand-
ard for ultimate decision-making.
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Studies designed to allow assessment of concentra-
tion—response relationships can be informative as the
whether or not concentrations typical of CHE are excep-
tional [180]. For example, one study exposed healthy par-
ticipants to whole DE at 100 pg/m3, 200 pg/m3, 300 pg/
m? and found exposure at a concentration of 300 pg/m?,
but not the lower concentrations induced cardiovascu-
lar responses [52]. While this study might be interpreted
as 300 pg/m® being a minimal concentration to induce
measureable effects in this specific context, the con-
centration—response function likely varies according to
participant phenotype, details of exposure protocol, and
particular outcomes. Indeed, another study examined
the effects of 2-h exposures of DE at a modest concen-
tration of DE25 and demonstrated significant differences
in measurements of endothelial function and fibrinolysis
[49]. And yet, in contrast, Giles et al. [64] used the same
measure of endothelial function as Tousoulis et al. [118]
but did not find effect of DE exposure, despite using a
concentration of DE300 and a shorter exposure dura-
tion of 30 min [76]. In epidemiological studies as well, the
minimal concentration required to demonstrate discern-
ible effects of chronic PM exposure is unclear. One large
scale multicenter European study reported an increase
in natural cause mortality in participants chronically
exposed to PM, . concentrations under 20 pg/m?> [181].
Furthermore, even at the same chamber concentration
of DE, inter-individual variability in the quantity of DE
inhaled likely plays a role clouding the threshold concen-
tration for observable effects. As discussed above, a reli-
able marker of DE exposure has yet to be identified and
research in this area is still ongoing. A method of accu-
rately quantifying personal DE exposure would, among
its many other potential applications, greatly aid in eluci-
dating the minimum concentrations needed for detection
of various endpoints in both CHE-DE and observational
studies. Thus, the minimum concentration needed to
produce observable or significant effects likely depends
not only on the health outcome being investigated, but
factors related to study design and participants as well.

As noted above, there is also a lack of consistency
among the findings of CHE-DE studies investigating
heart rate and blood pressure, though in general CHE-DE
studies have revealed a negative effect of acute DE expo-
sure on cardiovascular function. Observational study
designs have demonstrated associations between TRAP
exposure and both increased blood pressure [139-141]
and changes in heart rate variability [142-144]. A 2015
study utilizing CHE to ambient air pollution reported
changes in heart rate variability as well [172]. Inter-study
variability in the results of CHE-DE studies may indicate
that exposures within such protocols are not sufficiently
long and/or reflective of complex real-world ambient
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aerosols to produce a significant and detectable effects,
or simply that effects of acute TRAP exposures are dis-
tinct from those observed in epidemiology over a longer
time course.

Out of an abundance of caution in CHE-DE studies,
those with significant medical comorbidities have often
been excluded from participating, particularly in the ear-
lier era of such studies. Indeed, results from the small
number of CHE-DE studies involving subjects with nota-
ble medical conditions have suggested these individu-
als may respond differently to TRAP exposure relative
to healthy populations. As noted previously, in a recent
study, patients with mild to moderate COPD were shown
to have more activated peripheral neutrophils after acute
DE300 exposure compared to healthy never-smokers,
suggesting this cohort is more susceptible to the inflam-
matory effects of DE inhalation [26]. Another CHE-DE
study of COPD patients proposed differential deposi-
tion of DE particles in the respiratory tract as a cause of
their apparent risk in the setting of TRAP [35]. The rate
of deposited DE particles during spontaneous breathing
was higher in the COPD group versus healthy controls
and was also correlated with increasing disease severity
[35]. Participants with significant cardiovascular disease
have been included in a few studies, such as the FILTER-
HF trial reviewed earlier [94, 95]. Another study exposed
20 males with prior myocardial infarction (MI) and sta-
ble coronary artery disease to DE at 300 pug/m? PM,, [69].
DE inhalation decreased bradykinin-induced release of
tissue plasminogen activator in these participants with
cardiovascular disease [69]. However, vasodilation in
response to acetylcholine was impaired in the MI group
compared to healthy controls [69]. Taken together, these
results suggest DE exposure in men with stable coronary
artery disease may exacerbate myocardial ischemia and
impair fibrinolysis [69].

Notably, while this limited set of studies confirms some
effects of DE inhalation in these groups, consistent with
their chronic cardio-pulmonary disease, these effects
have been sub-clinical, anticipated by the study design,
and recognized as tolerable by approving ethics boards.
Furthermore, and most importantly, they were unasso-
ciated with adverse clinical events, across more than a
thousand of participants of various phenotypes, and are
instead broadly recognized as important advances in our
understanding of the pathophysiology of these diseases in
the context of a nearly ubiquitous exposure of global con-
cern. Moreover, from a public health standpoint, illus-
trating the biological plausibility of previously observed
consequences of pollution has supported and buttressed
the establishment of stronger air quality regulations.

While distinct adverse clinical events from CHE-DE
have not reported, studies have noted that undesirable
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symptoms were more frequent with DE exposure at a
concentration of 300 pg/m® PM, [22] and at DE at 300 pg/
m® PM, ; [114] compared to filtered air. However, another
study, notable for having demonstrated effective blinding
to exposure (importantly, as nominal blinding is much
more common), suggested that symptoms may be more
related to the perception of exposure rather than the
actual exposure itself [182], an effect that is especially rel-
evant for self-reported measures. Future studies should
not only be designed in a rigourously blinded manner but
also assess specifically for effectiveness of that blinding.

Finally, all systems for CHE-DE studies to date have
been within a contained infrastructure that is not
exposed to the typical ambient environment and asso-
ciated photochemistry known to ‘age’ the aerosol, in
a manner that generally increases oxidative potential.
While the use of ambient air pollution in CHE stud-
ies does account for this aging effect to an extent, stud-
ies that incorporate a method of photochemical aging
mimicking that of common urban airsheds would pro-
vide yet another incremental step towards optimizing the
translational capacity of these already highly informative
investigations.

Conclusion

CHE-DE studies have contributed greatly to our cur-
rent understanding of health outcomes linked to TRAP
exposure, particular in terms of elucidating mechanisms
that substantiate—or in some cases put into question—
observations from other study contexts. Research has
focused on the cardiovascular and pulmonary impacts
of DE inhalation, with oxidative stress thought to be the
dominant mechanism of DE-induced effects, while other
systems such as neuro-cognitive have been more recently
explored. Co-exposure studies have delineated power-
ful interactions between DE and commonly encountered
environmental factors, such as allergens and ozone. Par-
ticle filters, particularly in combination with activated
charcoal filters, are a promising method of reducing the
detrimental impacts of TRAP. To date, no robust bio-
marker of DE exposure has been identified. The main
limitation of CHE-DE studies is their inability to directly
examine chronic effects of DE inhalation, a niche better
filled by other experimental designs [183-186]. While
few CHE-DE experiments have included participants
with significant medical co-morbidities, evidence from
those that have suggests this can be done safely and can
reveal aspects of pathophysiology particular to these
populations. CHE-DE studies have proven to be an inval-
uable research tool and continue to advance relevant and
applicable knowledge as we strive to further limit expo-
sure to, and adverse effects of, air pollution.
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