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Abstract

Background: Although airborne fine particulate matter (PM) pollution has been demonstrated as an independent
risk factor for pulmonary and cardiovascular diseases, their currently-available toxicological data is still far from
sufficient to explain the cause-and-effect. Platelets can regulate a variety of physiological and pathological
processes, and the epidemiological study has indicated a positive association between PM exposure and the
increased number of circulative platelets. As one of the target organs for PM pollution, the lung has been found to
be involved in the storage of platelet progenitor cells (i.e. megakaryocytes) and thrombopoiesis. Whether PM
exposure influences thrombopoiesis or not is thus explored in the present study by investigating the differentiation
of megakaryocytes upon PM treatment.

Results: The results showed that PM exposure promoted the thrombopoiesis in an exposure concentration-
dependent manner. PM exposure induced the megakaryocytic maturation and development by causing cell
morphological changes, occurrence of DNA ploidy, and alteration in the expressions of biomarkers for platelet
formation. The proteomics assay demonstrated that the main metabolic pathway regulating PM-incurred alteration
of megakaryocytic maturation and thrombopoiesis was the mitochondrial oxidative phosphorylation (OXPHOS)
process. Furthermore, airborne PM sample promoted-thrombopoiesis from megakaryocytes was related to particle
size, but independent of sampling filters.

Conclusion: The findings for the first time unveil the potential perturbation of haze exposure in thrombopoiesis
from megakaryocytes by regulating mitochondrial OXPHOS. The substantial evidence on haze particle-incurred
hematotoxicity obtained herein provided new insights for assessing the hazardous health risks from PM pollution.
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Introduction

In recent years, dust-haze air pollution caused by human
activities has frequently plagued vast areas of China, and
represented a major burden on public health [1, 2]. The
accumulating epidemiological data have revealed the
positive relationship between airborne fine particulate
matter (PM) exposure and hazardous human health
risks, which not only exacerbates the mortality of pul-
monary and respiratory diseases, including pneumonia,
chronic obstructive pulmonary disease, and lung cancer,
[3-5] but also plays a pivotal role in the progression of
cardiovascular diseases, such as arrhythmia, myocardial
infarction and cardiac hypertrophy [6]. Previous studies
mainly focused on the direct toxicological effects on bio-
logical target organs, such as heart tissue and lung tissue
[7, 8]. However, the currently available data is still far
from sufficient to explain the cause-and-effect due to
the complex properties of PM [9]. Exploring sensitive
biomarkers and the underlying molecular mechanisms
are of high importance for understanding PM-induced
deleterious health effects.

Platelet has a pivotal role in the maintenance of nor-
mal hemostasis and regulation of coagulation, inflamma-
tion as well as immune processes, and its disorders are
closely related to the incidence of many diseases and
their progression, including pulmonary and cardiovascu-
lar diseases [10, 11]. It has been reported that activated
platelets can interact with both the pulmonary endothe-
lial cells and the white blood cells in the pulmonary
blood vessels, thus initiating or worsening the dysfunc-
tion and damage of lung tissues [12, 13]. Platelet is also
a major factor for the deterioration of cardiovascular
diseases, including acute coronary syndrome, stroke,
myocardial infarction, and myocardial ischemia [14, 15].
Since the main health risk from airborne PM exposure is
pulmonary and cardiovascular diseases, whether the
platelet is involved or not is worthy of being studied.
The epidemiological investigation on 6488 cases revealed
that an increase of 2.4 plg/m3 in long-term PM, 5 expos-
ure was associated with a relative elevation of 2.3% (95%
CI 14 to 3.3%) in the number of circulative platelets
[16]. Animal studies also showed that both the platelet
number and the platelet surface marker of CD41 level
were remarkably increased in concentrated PM-exposed
mice [17, 18]. Given the critical pathophysiological role
of platelets, understanding how airborne fine particles
may influence thrombopoiesis would help explain the
impacts of haze on human health.

The circulative platelets normally derive from megakar-
yocytes through a process of maturation, development, and
fragmentation of this kind of highly specialized precursor
cells [19-21]. There are roughly 1 x 10'* platelets produced
by the cytoplasmic fragmentation of megakaryocytes each
day in human bodies [22]. Besides bone marrow, lung tissue
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also contributes to megakaryocyte storage and throm-
bopoiesis [23, 24]. The total number of megakaryocytes
in pulmonary tissues is equivalent to that in bone
marrow, and the biogenesis of platelets in lung ac-
counts for approximately 50% of total platelet produc-
tion in whole bodies [23]. As the main deposition organ
of the inhaled PMs, [9] lung may thus provide the
direct encounter place for these exogenous airborne
particles and pulmonary megakaryocytes, thus potentially
incurring the abnormal functional changes of these
precursor cells like excessive thrombopoiesis.

In the present study, we aimed to investigate the
effects of airborne fine particles on thrombopoiesis from
megakaryocytes, elucidate the underlying mechanism
involved in PM-stimulated megakaryocytic maturation,
development, and fragmentation, and illustrate the influ-
ences from particle size as well as sampling filter. The
findings will provide a novel hematological explanation
for haze-induced health impacts.

Result

Characterization of QFF-PM, 5

The airborne PM sample collected by inorganic quartz
filter (QFF-PM,5) used in this study was characterized,
and the results showed that its morphology exhibited in
irregular particulate aggregates (Fig. 1a), and the hydro-
dynamic diameters were in the range of 200 nm to 450
nm (Fig. 1b). The information on its source (i.e. sam-
pling location and time) and other physicochemical
properties (like zeta potential, chemical components,
and endotoxin level) were previously reported, [25] as
the same batch of QFF-PM, 5 sample was used herein.

Cell viability and growth of megakaryocytes upon QFF-
PM, 5 treatment

To evaluate the effect of QFF-PM, 5 on thrombopoiesis
from megakaryocytes, Dami cell line was used as a
sound model for studying the differentiation of human
megakaryocytic cells [26]. The non-cytotoxic concentra-
tions of QFF-PM, 5 were firstly screened using Alamar Blue
assay, and the results based on cell viabilities (Fig. SIA) and
morphological observation (Fig. S1B) showed QFF-PM,5
exposure caused no significant cytotoxicity at the concen-
tration of 0.1 ug/mL or lower (p>0.05). Therefore, the
concentration of 0.1 ug/mL or lower was considered as the
non-cytotoxic level for Dami cells in the current study, and
used in the following experiments.

To select the exposure concentration and time for
QFF-PM, 5 effectively inducing thrombopoiesis from
megakaryocytes, the growth curves of megakaryocytes
exposed to different concentrations of QFF-PM, 5 were
monitored on different days. Figure S2 shows the lag
phase of cell growth appears in the control group, while
QFF-PM, 5 exposure significantly decreases the cell



Jin et al. Particle and Fibre Toxicology (2021) 18:19

Page 3 of 14

A QFF-PM:s B

Intensity (%)

100

hydrodynamic size distribution of QFF-PM, 5 in Milli-Q water

200 300 400 500 600 700 800

Fig. 1 Characterization of QFF-PM,s. a Representative TEM images of PM, s were collected by an inorganic quartz filter (QFF). b The
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proliferation along with the incubation time (p < 0.05 or
0.01). More specifically, 100 ng/mL QFF-PM, 5 exposure
firstly attenuated the increase of cell density (p <0.05)
on day 6, and the significant inhibition in megakaryo-
cytic proliferation was observed for all exposure groups
(10, 50, 100 ng/mL) on day 12 (p < 0.01). The stagnation
of megakaryocytic proliferation under these non-
cytotoxic exposure levels could be correlated with the
initiation of the cell differentiation [27]. Therefore, QFF-
PM, 5 treatment at the non-cytotoxic level (< 0.1 pg/mL)
for 12days was ultimately chosen for the following
thrombopoiesis studies.

Thrombopoiesis from megakaryocytes induced by QFF-
PM; 5

To further pinpoint whether QFF-PM, 5 exposure could
cause the thrombopoiesis from megakaryocytes or not,
the morphological observation was performed for the
megakaryocytes from different groups. The result
showed the typical small round cells in the control
group, while the treatment of thrombopoietin (TPO, the
positive control), a platelet growth factor, obviously en-
larged cell volume (Fig. S3). Likely, QFF-PM, 5 treatment
augmented the alteration of megakaryocytic morphology
in a concentration-dependent manner (Fig. S4). The
obvious changes in cell morphology suggested the initi-
ation of megakaryocytic differentiation process.

The impact of QFF-PM, 5 exposure on thrombopoiesis
was further evaluated using wheat germ agglutinin
(WGA) staining of cell membrane. The results in Fig. 2a
show that all megakaryocytes in negative control have
round contours, showing no detectable thrombopoiesis.
The cells in the blank filter control (i.e. QFF-Ctr) had
very similar morphology, confirming no spontaneous
thrombopoiesis occurred. In contrast, the addition of
TPO apparently changed the cell morphology, exhibiting
irregular shapes and budding processes, suggesting the
positive effect on megakaryocytic differentiation into

platelets. As for the treatments of different concentrations
of QFF-PM,;, they also induced obvious morphological
alterations in megakaryocytes, showing a similar induction
effect on thrombopoiesis like that in TPO group. The
quantitative analysis of thrombopoiesis by counting the
budding cell numbers revealed TPO induced a significant
increase in thrombopoiesis (p < 0.01, Fig. 2b). Likewise, an
exposure concentration-dependent elevation in throm-
bopoiesis was also observed for QFF-PM, 5 treatments
(Fig. 2b).

Transmission electronic microscopy (TEM) analysis
illustrated that compared with the control, the cell
volumes of megakaryocytes were significantly enlarged
by QFEF-PM,s exposure, and the cell margins were
irregular and spongy, showing that QFF-PM, 5 promoted
the thrombopoiesis from megakaryocytes (Fig. 2c). The
yellow arrows indicated that QFF-PM,;5 treatment in-
duced the appearance of the megakaryocytes with bud
bulges, namely formation of precursor platelets (Fig. 2c).
Additionally, the number of vesicles in megakaryocytes
was increased, and some granular substances denoted by
red arrows appeared in the vesicles (Fig. 2d). This
finding suggested that fine particles could penetrate
megakaryocytes via endocytosis and mainly concentrated
in the vesicles. No obvious morphological alteration was
observed for other organelles under TEM.

QFF-PM, ;5 elevated maturation and development of
megakaryocytes

Given that megakaryocytes undergo a terminal maturation
process to release platelets, [28] the potential influence of
QFF-PM, 5 on the differentiation of megakaryocytes was
further investigated to pinpoint the relevant mechanism of
PM-promoted thrombopoiesis. The morphological obser-
vation of the megakaryocytes based on Giemsa staining
assay showed that the treatment of positive control, TPO,
enlarged the cell size and obviously changed the cell
morphology (Fig. S5). In view of QFF-PM, 5 treatment, it
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Fig. 2 QFF-PM, 5 exposure promoted thrombopoiesis in megakaryocytes. a The fluorescence images of thrombopoiesis in megakaryocytes are
characterized by immunostaining with wheat germ agglutinin (WGA, red fluorescence). The green arrows denote the budding cells. Scale bar =
15 um. b Quantitative analysis of thrombopoiesis by counting the budding cell numbers in random views (n=4). *p < 0.05, or **p < 0.01 versus
the control. The blank filter extract (i.e. QFF-Ctr) and 1 ng/mL TPO were used as QFF-PM, s free and positive controls, respectively. ¢, d The
representative TEM images of megakaryocytes. The yellow arrows refer to the features of mature megakaryocytes and thrombopoiesis, such as
sponge-like edges, indicating the platelet demarcation membrane system. The red arrows indicate the fine particles in megakaryocytes. Scale
bar =2 um. The exposure concentration of QFF-PM, s was 100 ng/mL, and the exposure lasted for 12 d
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enhanced the differentiation of megakaryocytes in a
concentration-dependent manner (Fig. 3a).

The DNA contents evaluated using propidium iodide
(PI) fluorescence intensity demonstrated TPO signifi-
cantly induced elevation of DNA contents in megakar-
yocytes (Fig. S5), showing the promotion effect of this
positive control on megakaryocytic differentiation.
Likewise, QFF-PM, 5 treatment enhanced the contents
of DNA in an exposure concentration-dependent man-
ner (Fig. S6). Further DNA ploidy evaluation based on
PI staining coupled with flow cytometry measurement
showed that DNA ploidy was efficiently induced by
QFE-PM, 5 exposure, as evidenced by the reduction of
diploid cell population and the elevation of polyploid
cell populations (Fig. 3b). The cellular DNA ploidy of
2N changed significantly when the exposure concen-
tration of QFF-PM,s was 50 ng/mL or higher, and
significant increase in that of 8 N was accordingly
induced by QFF-PM, 5 incubation in a dose-related
manner (Fig. 3c, p <0.05 or 0.01). These findings
clearly verified that QFF-PM, 5 notably induced DNA
ploidy in megakaryocytes, which was crucial during
megakaryocytic maturation.

The characteristic molecular marker expression
changes are commonly used to evaluate megakaryo-
cytic differentiation and maturation [29]. The expres-
sions of the cell surface myeloid antigen of CD33 and
the megakaryocytic maturation associated antigen of
CD41a were thus analyzed, and the results in Fig. S7
showed TPO obviously induced left shift of CD33
antibody-stained cell population peak and right shift of
CD41a antibody-stained cell population peak, confirm-
ing the decrease of CD33 expression and increase of
CD41a expression during the differentiation process
of megakaryocytes. In view of airborne particles’ ef-
fect, the reduction in CD33 expression and the en-
hancement in CD41la expression were caused by 100
ng/mL QFF-PM, 5 exposure in time-dependent man-
ners (Fig. 3d, e), showing the positive effect of QFF-
PM,5 on the development and maturation of
megakaryocytes.

Proteomic findings on QFF-PM, s induced megakaryocytic
differentiation

Differential proteomics analysis was performed to ex-
plore the crucial cellular and molecular events during
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Fig. 3 QFF-PM, 5 interfered with the maturation and development of megakaryocytes. a The morphological alteration of megakaryocyte using
the Giemsa staining. Scale bar =50 um. b DNA ploidy in megakaryocytes using flow cytometry analysis. M1, M2, M3, and M4 refer to the 2N, 4 N,
8N, and 16 N ploidy, respectively. ¢ The quantitative analysis of DNA ploidy in megakaryocytes (n =4). d Time courses for the expressions of
CD33 and CD41a in megakaryocytes. The exposure concentration of QFF-PM, s was 100 ng/mL. e The quantitative analysis of CD33 and CD41a
expressions in megakaryocytes. *p < 0.05, and **p < 0.01 versus the corresponding controls

megakaryocytic differentiation induced by QFF-PM, 5.
As shown in the volcano plot (Fig. S8) the blue
points indicated the differentially expressed proteins
with large-magnitude fold-changes (|log, ratio| =1, x-
axis) and high statistical significance (p <0.05, y-axis).
More specifically, QFF-PM,5 exposure upregulated
the expressions of 337 proteins and downregulated
the expressions of 358 proteins in megakaryocytes
(Table S1). Extracting the target proteins correlated
with the differentiation of megakaryocytes, a total of
84 differentially expressed proteins, including NADH
dehydrogenase (043678), cytochrome C oxidase subunit

6B1 (P14854), phosphatidylinositol 5-phosphate 4-kinase
type-2 alpha (P48426), integrin beta-1 (P05556), and
prostaglandin G/H synthase 1 (P23219), was obtained
(Table S2) for the subsequent bioinformatics analysis.
The heatmap (Fig. 4a) further illustrated the fold
changes of these 84 differentially expressed proteins.
Gene ontology (GO) enrichment analysis of the
differentially-expressed proteins showed these differ-
entially expressed proteins were involved in biological
process, cell component and molecular function of
megakaryocytes, and Fig. 4b shows the top 10 path-
ways involved in each category.
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Fig. 4 Proteomic analysis of megakaryocytes treated with QFF-PM, . a The clustering heatmap of differentially expressed proteins with |log,
ratio| 2 1 and p-value < 0.05. Each column represents an individual sample, and each row represents an individual protein. The samples were
divided into two sub-groups including the control (nattier blue) and QFF-PM, s (pink) groups. b The three typically functional annotations,
including biological process, molecular function, and cellular component, were classified by the gene ontology (GO) database. ¢ Functional
classification of differentially expressed proteins using the kyoto encyclopedia of genes and genomes (KEGG). The biological/metabolic

The differentially expressed proteins regulated by
QFF-PM,5 were further enriched in 17 kyoto
encyclopedia of genes and genomes (KEGG) pathways
(Fig. 4c), and protein-protein interaction network (PPI)
(Fig. S9) was performed to reflect the correlation be-
tween the particular profile pattern and KEGG annota-
tion. According to the KEGG annotation, the main
pathways that regulate the differentiation of megakaryo-
cytes caused by QFF-PM,s are concentrated in meta-
bolic pathways, mitochondrial oxidative phosphorylation
(OXPHOS), spliceosome, ribosome, platelet activation,
etc. More specifically, a total of 6 differentially expressed
proteins correlated with respiratory chain complex I-V,
including NADH dehydrogenase (043678), cytochrome
C oxidase subunit 6B1 (P14854), mitochondrial cytochrome

b-cl complex subunit (P47985), NADH dehydrogenase
[ubiquinone] 1 alpha subunit 8 (P51970), mitochondrial
succinate dehydrogenase [ubiquinone] iron-sulfur subunit
(P21912), and mitochondrial cytochrome b-c1 complex
subunit 2 (P22695), were enriched in the OXPHOS
pathway.

Role of OXPHOS in QFF-PM, 5 influenced thrombopoiesis

To reveal the involvement of mitochondrial OXPHOS in
QFF-PM, 5 disturbed differentiation of megakaryocytes,
the transcriptional levels of mitochondrial respiratory
chain complex were investigated, and the results in
Fig. 5a show that QFF-PM,s induced exposure
concentration-related increases in expressions of all test
genes, including NDUFA2, NDUFAS8, SDHB, UQCRFS],
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Fig. 5 The role of mitochondrial OXPHOS on QFF-PM, 5 caused thrombopoiesis and megakaryocytic maturation. The effects of QFF-PM, 5 exposure on the
mRNA levels (@) and protein expressions (b) of mitochondrial respiratory chain complex 1<V in megakaryocytes. The antagonistic effects of rotenone on the
thrombopoiesis (c) and morphological alterations in megakaryocytes induced by 100 ng/mL QFF-PM, 5 exposure based on bright field microscopic
observations with or without Giemsa staining (d, e). f CD33 and CD41a levels in megakaryocytes upon 100 ng/mL QFF-PM s treatment with or without
15 nM rotenone. *p < 0.01. %p < 0.05 versus the negative controls, °p < 0.05 versus the groups with QFF-PM, s treatment alone

UQCRC2 and COX6B1. This result was consistent with
the finding from proteomics analysis. Western blot
analysis for the protein biomarkers in mitochondrial
OXPHOS illustrated that QFF-PM, 5 treatments enhanced
the expressions of complex I (NDUFB8) and complex IV
(COX 1I), while complex II (SDHB), complex III
(UQCRC2) and complex V (ATP5A) remained unchanged
(Fig. 5b and Fig. S10).

In order to further confirm the regulatory role of
mitochondrial OXPHOS in QFF-PM, 5 induced throm-
bopoiesis from megakaryocytes, rotenone, an inhibitor of
mitochondrial electron transport chain complex I, was
used, and the addition of this inhibitor efficiently attenuated
QFF-PM, 5 increased expressions of complex I and IV (Fig.

S11). The morphological observation based on WGA stain-
ing showed that the co-treatment of rotenone with QFF-
PM, 5 obviously reduced the counts of cells with irregular
shapes and budding structures when compared with QFF-
PM, 5 exposure group (Fig. 5¢). This result was further con-
firmed by the findings from the bright field observation of
the megakaryocytes from different treatments (Fig. 5d) and
the images with Giemsa staining (Fig. 5e). The analysis of
the biomarkers including CD33 and CD41a showed that the
co-treatment of rotenone caused the antagonistic effects on
QFF-PM, 5 induced alterations in the expressions of CD33
and CD41a in megakaryocytes (Fig. 5f). Accordingly, mito-
chondrial OXPHOS could play pivotal roles in QFF-PM, 5
elevated megakaryocytic maturation and thrombopoiesis.
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Considering the disturbance of mitochondrial
OXPHOS would influence reactive oxidative species
(ROS) generation, and the mitochondrial function, like
ROS generation, could play pivotal roles in regulating
the differentiation of hematopoietic stem cells and
megakaryocytes, [30—33] the effect of QFF-PM, 5 expos-
ure on ROS levels in megakaryocytes was thus investi-
gated. The results from flow cytometry assay using
DCFH-DA probe showed that QFF-PM, ;s induced ex-
cessive ROS production in megakaryocytes (Fig. S12A),
which was in an exposure concentration-dependent
manner (Fig. S12B). The co-treatment of rotenone sig-
nificantly attenuated the elevation in cellular ROS level
induced by QFF-PM, 5 exposure (Fig. S12C, D). This re-
sult consistently confirmed oxidative stress could be in-
duced by QFF-PM, 5 exposure through the regulation of
mitochondrial OXPHOS in megakaryocytes, thus result-
ing in the accelerated thrombopoiesis.

Evaluation of other airborne fine particles on
thrombopoiesis

To investigate whether other airborne fine particle sam-
ples with different sizes collected by different filters had
a similar effect with QFF-PM, 5, three other kinds of PM
samples including PPF-PM, 5 (PM, 5 collected by organic
polypropylene filter, i.e. PPF), QFF-PM; (PM; collected
by QFF) and PPF-PM,, were tested. The characterization
data in Fig. S13 show the particulate aggregates in
morphology and hydrodynamic diameters at the nano-
meter scale. The data from chemical analysis was given
in a previous publication [25]. The data from growth
curves of megakaryocytes (Fig. S14) and WGA staining
assay (Fig. S15A) demonstrated that QFF-PM;, PPF-PM;
and PPF-PM, 5 could also induce thrombopoiesis from
megakaryocytes just like the effect of QFF-PM, ;5. Using
three-way ANOVA method, the statistical analysis of the
influencing factors, including exposure concentration
(EC), filter type (FT), PM size was performed for the
quantitative data from Fig. 2b and S15B, and the result
in Table S3-S5 shows that EC and PM size have signifi-
cant effects on thrombopoiesis (p < 0.01), while FS has
no statistically significant influence (p > 0.05).

The PI-probed DNA contents in megakaryocytes were
also found to be increased by these three kinds of PM
sample stimulations in exposure concentration-
dependent manners (Fig. S16A). The DNA ploidy ana-
lysis using flow cytometry showed that it was induced by
PM exposure, especially for 8 N ploidy, which exhibited
in particle size dependent (Fig. S16B, C). The analysis of
the megakaryocytic maturation biomarkers, i.e. CD33
and CD41a, showed QFF-PM,; also caused the decrease
of CD33 expression and increase of CD41la expression
(Fig. S17), which was consistent with the finding from
QFF-PM, 5 exposure experiments (Fig. 3d, e). The
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statistical analysis for the effect of PM size on PM-
influenced megakaryocytic maturation showed that this
factor had significant effects on total DNA content and
CD41a expression (Table S6), suggesting the role of PM
size in disturbing thrombopoiesis.

Discussion

The correlation between haze pollution and pulmonary
or cardiovascular diseases has been well established by
abundant epidemiological data. Platelet can be generated
from megakaryocytes in lung, and regulate various
physiological and pathological processes in circulative
system, [10, 11] thus suggesting a potential target for air-
borne PM exposure in human bodies. The toxicological
effect of PMs on thrombopoiesis from megakaryocytes is
thus worthy of being explored to provide the patho-
logical explanation for haze-induced health risks. In the
present study, airborne fine particles significantly pro-
moted the development, maturation and fragmentation
of megakaryocytes, thus causing thrombopoiesis, and
this process was regulated by mitochondrial oxidative
phosphorylation (Fig. S18).

As far as PM-induced toxicity is concerned, the expos-
ure dose selection is of utmost importance, taking into
account that the toxicological outcomes could explain
the chronic health risk in a realistic situation. Herein,
the non-cytotoxic concentrations of PM no more than
100 ng/mL were selected to investigate the cellular re-
sponses of megakaryocytes under sub-lethal exposure
stress of PMs. Considering the mean mass concentration
of PM, 5 in Beijing, 2019 during the winter season was
210 pug/m® (from 35 to 454 pug/m?), the daily inhaled PM
amount was approximately 4.54 mg, taken the daily re-
spiratory volume of 21.6 m? for an adult [34]. When the
PM bioavailability of 45% [29, 30] and pulmonary circu-
lative blood of 100 mL [35—37] was assumed, the realis-
tic exposure concentration could be 20.43 ng/mL, which
indicated the study performed herein was environmental
relevant. The findings accordingly could be used for
assessing the actual haze-induced health risks.

The epidemiological data revealed the positive rela-
tionship between fine particle exposure and the in-
creased number of platelets [16]. Previous animal
experiments showed that the platelet count in the per-
ipheral blood of mice exposed to 88.5ug/m® concen-
trated ambient particulate matters (CAPs) for 2 weeks
was significantly increased as compared to the control
[38]. The similar result that an elevated number of circu-
lating platelets appeared in mice exposed to Sacramento
urban PM, ;s for 24 h by Van et al. [39] The results in
the present study indicated that the exposure of airborne
fine particles promoted the thrombopoiesis from mega-
karyocytes, which showed the involvement of the



Jin et al. Particle and Fibre Toxicology (2021) 18:19

differentiation of platelet progenitor cells, and provided
the cytobiological explanation for PM-induced alteration
of peripheral blood platelet number.

As a sound model alternative to human progenitor
cells (CD34") for studying thrombopoiesis, the megakar-
yocytic cells (Dami) proceed differentiation along with
the growth of cell volume and nucleus enlargement due
to the occurrence of DNA ploidy [19, 26]. In particular,
megakaryocyte undergoes multiple DNA replications
without cell divisions through a unique process of endo-
mitosis [40]. With the occurrence of DNA polyploidy, the
cells begin a rapid cytoplasmic expansion stage, which is
characterized by the formation and accumulation of
abundant proteins in cell membranes [40, 41]. As one of
the characteristic molecular biomarkers, CD4la was
upregulated during megakaryocytic maturation [42]. The
cytoplasm of megakaryocytes subsequently undergoes
large-scale recombination, forming beaded cytoplasmic
extensions, i.e. pro-platelet [40]. The long branches of
pro-platelets are then extended into sinusoidal vessels
during cytoskeleton-driven processes, where they undergo
fission to release platelet [41]. The results in Figs. 2 and 3
herein provided the supportive proof that airborne PM
exposure interfered with the process of endomitosis and
promoted the development of megakaryocytes. Likewise,
Fortoul et al. found that the subacute and chronic
inhalation of vanadium could induce the megakaryocytic
maturation, and increase the cell size and cytoplasmic
granular content in megakaryocytes, accompanying by nu-
clear changes with the final increase in circulating platelet
production [43, 44]. Our finding was highly consistent
with the report on fine particle-induced megakaryocytic
mature and thrombopoiesis, and would indicate the po-
tential deleterious risks from haze exposure under both
healthy and disease conditions.

The mitochondrial OXPHOS plays important role in
the hematopoiesis process [30, 31]. Recent researches
have shown that mitochondrial activity or content deter-
mines the status of hematopoietic stem cells (HSCs), the
source of the megakaryocytes, [32] and mitochondrial
membrane potential (MPP) can influence the transcrip-
tion rate of HSCs [45]. Quiescent and self-renewing
HSCs rely on mitochondrial OXPHOS rather than on
glycolysis for energy production, thus metabolically re-
wiring from glycolysis to mitochondrial-based energy
generation accompanying with HSC differentiation and
lineage commitment [31]. Additionally, excessive ROS
generation is closely correlated with the dysfunction of
mitochondrial OXPHOS and growing evidences support
the crucial role of ROS in cellular responses to air pollu-
tion [46]. ROS has also been demonstrated to prime the
differentiation of hematopoietic progenitors in Drosoph-
ila, [47] and the disturbance in oxidative/anti-oxidative
system leads to premature HSC senescence due to loss
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of quiescence and self-renewal capacity in HSCs of
mouse models [47, 48]. In the present study, the prote-
omic data revealed the disturbance in mitochondrial
OXPHOS and elevation in cellular ROS level due to
QFF-PM, 5 exposure (Figs. 4 and 5), confirming the dis-
turbed mitochondrial OXPHOS and excessive cellular
ROS production jointly regulated PM-induced megakar-
yocytic differentiation and thrombopoiesis.

The differentiation process of megakaryocytes, includ-
ing cell maturation and thrombopoiesis, heavily rely on
the recruitment of actin and microtubule cytoskeletons
[49-51]. When encountering vascular damage, the
recombination of cytoskeleton and doubling of actin fila-
ment content drive megakaryocytes to produce platelets
[52]. The actin-binding proteins, such as filamin A
(FInA), also contribute to platelet production from
megakaryocytes [53, 54]. Moreover, megakaryocytes ex-
press receptors to sense inflammation and IL-1 pro-
motes the rupture of megakaryocytes and subsequent
platelet release under acute inflammatory conditions
[55-57]. The inflammatory responses to PM, 5 exposure
are commonly believed to be related to the consequent
health outcome [58]. The proteomic data herein showed
the regulation of actin cytoskeleton (upregulation of
PIP4K2A and ITGB1) and inflammatory responses
(upregulation of PTGS1) due to QFF-PM, 5 exposure
(Fig. 4, Table S2) could greatly contribute to its effect
on megakaryocytic differentiation.

Conclusion

In the present study, the effect of airborne fine
particles on thrombopoiesis was explored, and the
results demonstrated the induction effect of PMs on
megakaryocytic development and maturation, which
was fundamentally regulated by altering mitochondrial
oxidative phosphorylation in cells. The findings, for
the first time, provided the cytobiological basis for the
cardiovascular health risk incurred by airborne par-
ticulate pollution. In future studies, more efforts
should be devoted to the whole scale of the differenti-
ation of HSCs into platelets, the function of these
newly-formed platelets and in vivo biological responses
to disclose the trajectory imprinted by haze exposure
in human bodies.

Materials and methods

Cell culture and exposure protocol

Dami cell line (Institute of Biochemistry and Cell
Biology, CAS, Shanghai, China), as a megakaryocytic cell
model, was cultured in RPMI-1640 medium (HyClone,
USA) supplemented with 10% fetal bovine serum (FBS,
Gibico, USA) and 1% penicillin/streptomycin (Gibico,
USA) in a humidified atmosphere of 5% CO, at 37 °C.



Jin et al. Particle and Fibre Toxicology (2021) 18:19

In exposure experiments, the cells were seeded on the
dishes or plates pre-coated with 1% gelatin (Gibico, USA)
and cultured for 12h, FBS concentration in the medium
was adjusted from 10 to 2% before cell stimulation. The
cells were treated with various concentrations of QFF-
PM,5 (0, 10, 20 and 100 ng/mL), and the exposure lasted
for consecutive 12 d with the medium replacement every
3 d. Thrombopoietin (TPO, 1 ng/mL, Pepro Tech, USA)
was used as the positive control to evaluate the differen-
tiation of megakaryocytes into platelet. The blank
control and the extract from the blank sampling filter
(QFE-Ctr) were also designed as the negative controls.

WGA staining assay

The megakaryocytic cells grown in 1% gelatin-precoated
glass bottom cell culture dishes (35 mm, NEST) were
performed 12 d exposure as described above. The cul-
ture medium was discarded, and the cells were gently
washed with PBS twice, then fixed with 4% paraformal-
dehyde for 5min at room temperature. After PBS rinse
twice, the cells were incubated with 10 pg/mL WGA
(Biotium, USA) at 37°C for 30 min. Following triple
washes with PBS, the samples from different groups
were observed and photographed under a laser scanning
confocal microscope (Leica TCS-SP5, Germany). The
cells with morphological alterations were counted for
the quantitative evaluation of thrombopoiesis.

Ultrastructural analysis

The megakaryocytic cells from different exposure groups
(around 5,000,000 megakaryocytic cells per group) were
harvested, and immediately immersed into 2.5% glutaral-
dehyde (Sigma, USA) for 2 h, then washed with PBS buf-
fer. The cells were post-fixed using 1% osmium tetroxide
buffer (Sigma, USA) for 1h, subsequently dehydrated
using a series of concentrations of ethanol solutions, and
finally embedded into epoxy resin. Sections were cut
into 70 nm, and stained with 2% uranyl acetate (KEYI
Technology Development Ltd., China) and 3% lead cit-
rate (KEYI Technology Development Ltd., China) in se-
quence. The ultrastructural observation was performed
under a transmission electron microscope (TEM, JEM
1200EX, Japan) with an accelerating voltage of 100 kV.
The TEM images were analyzed under the help from the
commercial-available technique service (Beijing ZKBC
Technology Service Company Ltd).

Cell morphological observation

In order to characterize the morphological changes during
the differentiation of megakaryocytes, the cells were
seeded in the 12-well plates at a density of 2000 cells/well
to keep the initial confluency of about 5%. After the treat-
ments with TPO (1 ng/mL, the positive control) or differ-
ent concentrations of QFF-PM,;5 (0, 10, 50 and 100 ng/
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mL) for 12 d, the cells from different exposure groups
were firstly observed under the inverted microscope
(Olympus IX73, Japan) and the images under the bright
field were taken. Then the cells were gently washed twice
with PBS, fixed with 1 mL of cold methanol (- 20 °C) for
3 min, and stained with 10% Giemsa (Solarbio, China) at
room temperature for 20 min. The stained cells were
washed with PBS again and finally submitted to morpho-
logical observation and photographing.

DNA polyploidy analysis

The megakaryocytic cells were seeded in 1% gelatin pre-
coated 60 mm dishes at the density of 100,000 cells/dish,
and performed exposure experiments as described
above. When the exposure was terminated, the cells
were washed with PBS twice, harvested, fixed in ice-cold
70% ethanol and kept at —20°C for 24 h. After rinsing
with PBS twice using centrifugation (600 g, 5 min), the
cells were incubated with 0.1 mg/mL RNase A (Solarbio,
China) at 37°C for 30 min, and stained with 10 pg/mL
propidium iodide (PI, Solarbio, China) in the dark at
room temperature for 10 min. The cells were subse-
quently washed twice with PBS, dispersed in 500 puL of
PBS, and finally analyzed using a flow cytometer (Novo-
cyte 1040, ACEA Biosciences, USA) under Ae/Aem of
535 nm/615 nm for DNA polyploidy. The percentages of
cell populations with DNA ploidy of 2N, 4N, 8 N and
16 N were evaluated using Novo Express software.

Flow cytometry analysis of CD33 and CD41a expressions
in megakaryocytes

The megakaryocytes were seeded in 1% gelatin pre-coated
60 mm dishes at the density of 100,000 cells/dish and
processed stimulation with 100 ng/mL QFF-PM, 5 for 3, 6,
9 and 12 d. The cells harvested at different time points
were washed once with ice-cold PBS and subsequently in-
cubated with 100 uL of CD33-PE (1:10, BioLegend, USA)
and CD41a-FITC (1:10, Invitrogen, USA) in the dark at
37 °C for 30 min, respectively. Followed by the centrifuga-
tion (7000 rpm, 30s) and three-time washes with PBS, the
cells were re-suspended in 500 pL. of PBS, and submitted
to the analysis by a flow cytometer (Novocyte 1040, ACEA
Biosciences, USA). CD41a expression was assessed using
the fluorescein isothiocyanate (FITC) channel, whereas
CD33 level was examined using the PE channel. The for-
ward and side scatters were used to eliminate the disturb-
ance from cellular fragments. The quantitation of the test
biomarker expressions was based on the corresponding
mean fluorescence.

Differential proteomics analysis

The megakaryocytic cells were seeded in 1% gelatin pre-
coated 100 mm dishes at the density of 1,000,000 cells/
dish, cultured for 12h and performed exposure
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experiments as described above. Three biological repli-
cates from the control group and 100 ng/mL QFF-PM, 5
exposure group (12 d), were prepared for proteomic ana-
lysis. Briefly, 1 x 10" cells were harvested and lysed with
300 pL of SDT lysis buffer (4% SDS, 100 mM DTT, 100
mM Tris-HCl pH 8.0). Samples were boiled for 5min
and further ultrasonicated and boiled again for another
5 min. Followed by the centrifugation at 16,000 g for 15
min to remove undissolved cellular debris, the super-
natant was collected and quantified with a BCA protein
assay kit (Bio-Rad, USA). Extracted proteins were sepa-
rated by 12.5% SDS-PAGE gel, and protein bands were
visualized by Coomassie Blue R-250 staining. Protein di-
gestion in gel pieces was performed with a filter aided
proteome preparation (FASP) protocol as previously de-
scribed for proteins digestion [59].

Liquid chromatography (LC) was performed on a Q
Exactive Plus mass spectrometer (MS) coupled with Easy
1200 nLC (Thermo Fisher Scientificc MA, USA).
Reverse-phase high-performance liquid chromatography
(RP-HPLC) separation was performed by a self-packed
column (75 pm x 150 mm; 3 pum ReproSil-Pur C18 beads,
120 A, Dr. Maisch GmbH, Ammerbuch, Germany) at a
flow rate of 300 nL/min. The RP-HPLC mobile phase A
was 0.1% formic acid in the water, and B was 0.1% for-
mic acid in 85% acetonitrile. The gradient elution was
set as following: 2—-8% buffer B (2 min), 8 to 28% buffer
B (40 min), 28 to 40% buffer B (8 min), 28 to 40% buffer
B (1 min), and 40 to 100% buffer B (10 min).

The MS data, analyzed using MaxQuant software,
were searched against the Uniprot protein Homo sapiens
database (174,301 total entries, downloaded 09/17/2018).
Label-free quantification was carried out using intensity
determination and normalization algorithm as previously
described [60]. The bioinformatics data were processed
using Perseus software, Microsoft Excel, R statistical
computing software and Cytoscape software.

Transcriptional assay for mitochondrial respiratory chain
genes

The megakaryocytic cell samples from different treat-
ments were homogenized using Trizol reagent (Gibco,
USA) for RNA extraction and purification according to
the manufacturer’s instruction. The RNA concentrations
were measured by NanoDrop (Thermo Scientific, USA).
After the transcription of RNA to cDNA using the script
c¢DNA Synthesis kit (BioRad, USA), all the samples were
performed for gPCR assay using SYBR Green gPCR
Master Mix (BioRad, USA) in a Roche 480 Real-Time
PCR system (Roche, USA). The target genes included
ubiquinone oxidoreductase subunit A2 (NDUFA2),
ubiquinone oxidoreductase subunit A8 (NDUFAS),
succinate dehydrogenase complex iron-sulfur subunit B
(SDHB), ubiquinol-cytochrome c reductase, Rieske iron-
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sulfur polypeptide 1 (UQCRFS1), ubiquinol-cytochrome
¢ reductase core protein 2 (UQCRC2), cytochrome c
oxidase subunit 6B1 (COX6B1) and the reference gene
was GAPDH. The corresponding primer sequences are
shown in Table S7. The relative mRNA expressions of
target genes were normalized to the housekeeping gene
using 2748CT ethod [61].

Immunoblotting assay for respiratory chain complex

The megakaryocytes from different treatments (0, 10, 50
and 100ng/mL, 12 d) were transferred to a glass
homogenizer and ground in an ice bath for 35 min. Then,
the mitochondrial proteins were prepared using a mito-
chondrial protein extraction kit according to the manufac-
turer’s instruction (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China). After being quantitatively ana-
lyzed using a BCA protein assay kit (Beyotime, China), the
consistent amount of the protein sample from each group
was submitted to Western blot assay. The primary anti-
body was the total OXPHOS antibody cocktail (1:1000,
ab110411, Abcam, USA), and the second antibody was the
HRP-conjugated anti-mouse IgG (1:500, EasyBio, China).
The quality of this assay was reversely confirmed by stable
expressions of the test biomarkers, including mitochon-
drial respiratory chain complex II, III and V.

Assays for co-treatment of PMs and rotenone

To further analyze the regulatory role of mitochondrial
OXPHOS in PM-induced differentiation of megakaryo-
cytes into platelets, rotenone, an inhibitor of complex I
of the mitochondrial electron transport chain, was used
for the co-exposure experiments. Briefly, four groups in-
cluding control, 15 nM rotenone, 100 ng/mL QFF-PM, 5
and the combination of rotenone (15nM) and QFF-
PM,5 (100ng/mL) were designed, and the exposure
lasted for 12 d as described above. After the treatment
was terminated, WGA staining, morphological observa-
tion and flow cytometry analysis of CD33 and CD4la
expressions were performed to evaluate the effect of
rotenone on PM-induced thrombopoiesis.

Statistical analysis

All statistical analyses were performed using the software of
SPSS 17.0 or GraphPad Prism 8.0.1. Each assay was inde-
pendently carried out three times or more, and the quanti-
tative data were expressed as the mean + standard deviation
(SD), unless indicated otherwise. Differences among groups
were evaluated by one-way analysis of variance (ANOVA)
or three-way ANOVA. Statistical significance was denoted
when p value was less than 0.05, or 0.01.
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