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The potential of omics approaches to
elucidate mechanisms of biodiesel-induced
pulmonary toxicity
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Abstract

Background: Combustion of biodiesels in place of fossil diesel (FD) has been proposed as a method of reducing
transport-related toxic emissions in Europe. While biodiesel exhaust (BDE) contains fewer hydrocarbons, total
particulates and carbon monoxide than FD exhaust (FDE), its high nitrogen oxide and ultrafine particle content may
still promote pulmonary pathophysiologies.

Main body: Using a complement of in vitro and in vivo studies, this review documents progress in our understanding
of pulmonary responses to BDE exposure. Focusing initially on hypothesis-driven, targeted analyses, the merits and
limitations of comparing BDE-induced responses to those caused by FDE exposure are discussed within the contexts of
policy making and exploration of toxicity mechanisms. The introduction and progression of omics-led workflows are
also discussed, summarising the novel insights into mechanisms of BDE-induced toxicity that they have uncovered.
Finally, options for the expansion of BDE-related omics screens are explored, focusing on the mechanistic relevance of
metabolomic profiling and offering rationale for expansion beyond classical models of pulmonary exposure.

Conclusion: Together, these discussions suggest that molecular profiling methods have identified mechanistically
informative, novel and fuel-specific signatures of pulmonary responses to biodiesel exhaust exposure that would have
been difficult to detect using traditional, hypothesis driven approaches alone.
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Background
In 2017, UK road users travelled 325.5 billion miles [1]; a
figure that is forecast to increase by 75 billion by 2040 [2]
and follow a trend that is being predicted globally [3]. Fossil
fuel combustion contributes significantly to traffic-related
air pollution, releasing pollutant gases (including nitrogen
oxides (NOx), sulphur dioxides and carbon monoxide
(CO)) and particulates [4]. As these composition derived
particles are of respirable size [5–7], exist ubiquitously in
urban areas and have been shown to induce inflammatory
pulmonary pathophysiologies [8–11], regulators welcome
interventions that reduce their emission.
Biodiesel is a liquid fuel produced through transesterifi-

cation of vegetable oils, animal fats or waste cooking oil.
This base-catalysed reaction is driven by adding alcohol to

the feedstock [12], converting the parent product to its
less viscous alkyl-ester. When blended (up to 20% volume)
with fossil diesels (FD), biodiesels can power modern
compression-ignition engines efficiently without demand-
ing modified transport or storage measures [13, 14].
Biodiesel has a higher oxygen content than FD, en-

couraging more complete fuel combustion [13]. Coupled
with an absence of aromatic and sulphurous com-
pounds, the resulting emissions can contain 90% fewer
unburned hydrocarbons, 75–90% fewer polycyclic aro-
matic hydrocarbons (PAHs), 43% less CO and 55% less
particulate matter (PM) than FD exhaust (FDE) [15, 16],
depending on the engine and combustion conditions
used to burn the fuel. As these pollutants associate sig-
nificantly with the incidence of airway infection and re-
spiratory symptoms, onset and exacerbation of
inflammatory pulmonary diseases and rates of respira-
tory hospital admissions in heavily trafficked areas [17–
20], biodiesel usage has been encouraged in Europe, with
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the 2009/28/EC directive striving to replace 10% of
transport fuel with biodiesel by 2020 [21].
Despite some improvements in emission profiles, BDE

generally contains more NOx and ultrafine particles
(PM0.1) than FDE [22] with particle emissions increasing
with the chain length and degree of double bond satur-
ation in the feedstock fatty acids [23]. Given that PM0.1

have been shown to exhibit greater inflammatory potential
and oxidant capacity than larger particles [24, 25] and that
both PM0.1 and NOx have been associated with mortality
from respiratory diseases [26, 27], it is imperative that the
impacts that biodiesel exhaust (BDE) exposure have on
pulmonary health are characterised and communicated to
policymakers. Furthermore, BDE contains a number of
molecules that have the potential to induce pulmonary
toxicity that are not found in FDE (or are present at sig-
nificantly lower levels). Esters such as those found within
BD can produce toxic, mutagenic and carcinogenic car-
bonyls when burnt in the presence of O2, with concentra-
tions of formaldehyde, acetaldehyde, acrolein, acetone,
propionaldehyde and butyraldehyde increasing linearly as
the BD component of blends increases [28]. Additionally,
BD fuel esters themselves have been detected in BDE, in-
cluding several species that are known to induce pulmon-
ary irritation [29].

Two complementary approaches have been employed
to investigate particulate toxicity; traditional
hypothesis-driven methods and, more recently, agnostic
approaches that employ various untargeted omics plat-
forms to identify global patterns of response to generate
novel insights and new hypotheses. Traditional ap-
proaches are of considerable value to epidemiologists be-
cause they associate pathophysiological endpoints
(including airway responsiveness and respiratory symp-
toms) with underlying molecular events, i.e. they support
causal inference. Furthermore, with BD being proposed
as a replacement for FD, they enable investigation of
endpoints that have previously been validated as markers
of particle toxicity allowing comparative toxicological as-
sessment. The techniques are however, limited in their
ability to uncover novel pathways, making them less in-
formative for mechanistic studies of complex aerosols
with novel constituents.
In contrast, high-throughput omics techniques charac-

terise the expression of 100s–1000s of molecules, or 10s
of thousands of transcripts, simultaneously, enabling
additional molecular events to be tested for association
with exposures in an untargeted manner (Fig. 1). This
approach has significantly advanced characterisations of
FDE toxicity, demonstrating, for example, that lung cells
undergo a hierarchical oxidative stress response follow-
ing exposure [30] and that impairment of macrophage
phagocytic functions may be influenced by differential
expression of genes implicated in cytoskeletal

rearrangements [31]. Still less commonplace than the
cheaper traditional techniques, omics screens are gaining
popularity as methods of characterising pulmonary re-
sponses to BDE exposure.
The information that hypothesis-driven studies have

provided on biodiesel-induced pulmonary toxicity has
been reviewed comprehensively [32, 33]. Following from
this work, our review focuses on recent transitions to-
wards omics-based assessments of BDE-induced pulmon-
ary toxicity. The work aims to evaluate the effectiveness of
including molecular screens in characterisations of pul-
monary toxicity mechanisms and to comment on the use-
fulness of these data in terms of understanding whether
BD blends are a ‘healthy’ replacement for pure FD. To
produce these evaluations, studies of biodiesel toxicity
were identified within the PubMed database (http://
www.ncbi.nlm.nih.gov/sites/entrez) using the key words
‘biodiesel AND lung OR pulmonary’ combined with ‘tox-
icity/ inflammation/ genotoxicity/ transcriptomics/ mass
spectrometry or omics’. Reports from human cohort stud-
ies, animal exposures or in vitro modelling were included
for review while studies performed in plants or with raw
biofuels were excluded from the analysis.

Main body
Hypothesis-driven approaches to exhaust toxicity
The London smog episode in 1952 was one of the events
that initiated research into the toxicity of ambient pollution,
and since that time, characterisation of pulmonary re-
sponses to inhaled xenobiotics has advanced greatly [34].
Much of our knowledge of the adverse effects that exhaust
emissions exert upon the lung is derived from human ex-
perimental chamber studies of FDE exposure [35, 36], or
exposures of individuals to micro-environments with high
traffic related emissions [37–39]. Historically, these studies
have sought to measure validated markers of pulmonary re-
sponses in a targeted manner and are supported by increas-
ing evidence from the epidemiological literature that
respiratory mortality and morbidity is strongly related to
components within the airshed that reflect emissions from
diesel exhaust, such as elemental and black carbon [40–42].
Experimental chamber studies that have examined re-

sponses to the full diesel aerosol: particulates, volatile or-
ganic species and co-pollutant gases (NO2, NOx and
CO) have shown that diesel exhaust (100–300 µg/m3

PM10) breathed over short durations of 1–2 h (in indi-
viduals performing intermittent exercise) can elicit the
full pathway of neutrophilic inflammation in the lung
[39], from upregulation of endothelial adhesion mole-
cules [39], expression of pro-inflammatory cytokines
[39], such as IL-6 and Gro-α, to established airway neu-
trophilia in both the airway tissues and respiratory tract
lining fluids [39]. These responses occur in parallel with
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increased mast cell numbers in the bronchial mucosa
and lymphocytosis [39, 43].
In these studies, largely conducted on young heathy

volunteers, the causal role of the combustion derived
nanoparticles in respiratory responses have been
established experimentally using particle traps [44]. In
addition, experiments comparing engines running
under idling versus under load (standard city cycle),
which impacts on the relative proportion of elemental
carbon to organic carbon, have yielded broadly similar
results, although some evidence of lower airway eo-
sinophilia was noted followed exposure to diesel ex-
haust from the engine under load. Underpinning
these inflammatory responses in the airways, activa-
tion of redox sensitive pathways has been reported,
most clearly through the increased nuclear localisa-
tion of nuclear factor kappa-light-chain-enhancer of
activated B cells (NFκB) and activator protein 1
(AP-1) [45], but also through the upregulation of the
epidermal growth factor receptor (EGRF) in the bron-
chial epithelium [46].

Less clear, until very recently, has been the mechanism
by which diesel exhaust could lead to an exacerbation of
asthma symptoms. Early studies, simply looking at the
inflammatory response of mild and moderate asthmatic
exposures to diesel failed to demonstrate clear evidence
of augmented allergic inflammation [36], contrasting
with the evidence of upper airway inflammation and pul-
monary irritation (measured as a sustained reduction in
forced expiratory volume) seen in asthmatics exposed to
high levels of FDE as they walked along Oxford Street,
London, UK [39]. Some mechanistic basis for increased
respiratory symptoms in response to diesel particulates
has recently been reported by experimental evidence
demonstrating that the organic constituents associated
with diesel particles can activate airway sensory affer-
ents; a response that could be inhibited using a transient
receptor potential ankyrin-1 antagonist, provision of an-
tioxidants (N-acetyl cysteine) and inhibition of the aryl
hydrocarbon receptor (AhR) [46]. Additionally, work by
Carlsten et al. has demonstrated that diesel challenge of
allergic individuals appears to sensitise the airways to
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Fig. 1 Major techniques and technologies employed during molecular profiling. Typical numbers of molecules detectable by each platform
(during a full platform analysis) are displayed in brackets
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subsequent allergen challenge [47, 48]. Thus, collectively
over the last 20 years, the evidence base that FDE can
impact adversely on both the healthy and allergic airway
has increased and constitutes a substantial mechanistic
underpinning of the epidemiological findings of adverse
health effects associated with exposure to traffic-derived
pollutants, especially FDE [49].

Biodiesel toxicity: the influence of fossil diesel studies
A decade ago, few groups had explored the health impacts
of BDE exposure; either from an epidemiological or mech-
anistic viewpoint and unlike for FDE, human exposure
studies had not been performed. However, histological
changes such as increases in the lung: body ratios had
been observed in female rats that had been exposed re-
peatedly to 0.5mg particles /m3 of 100% soybean BDE via
inhalation for thirteen weeks, along with dose-dependent
increases in pulmonary macrophage counts and particle
loading at lower and intermediate doses (0.04 and 0.2 mg/
m3) [50]. These changes were consistent with the develop-
ment of inflammatory pulmonary lesions and bronchiolar
metaplasia in the alveoli where macrophages remained
particle-laden for 28 days [50]. In terms of cytotoxicity,
the soluble organic fraction (SOF) of rapeseed methyl
ester (RME) exhaust was identified as more potent than
its FD counterpart when applied to L929 mouse fibro-
blasts; while in the Ames test, the SOF of FDE-PM was
more mutagenic to bacteria than BDE-derived particulate
matter (BDE-PM) [32, 51]. Mutagenicity tests were also
performed on rat hepatocytes, indicating that differences
in the mutagenic potential of FDE and BDE were less pro-
nounced in mammalian cells compared to bacteria; poten-
tially reflecting differences in their metabolic capabilities
[51]. Taken together it was proposed that studies of BDE
toxicity should continue to draw from characterisations of
FDE toxicity [52]. Indeed, comparisons between the
toxicological potential of alternative and existing products
are common-place in many fields, [53] and most
biodiesel-themed studies have employed this approach.
While studies have continued to explore the genotoxi-

city of BDE, relative to FDE in vitro, a comprehensive
evaluation of carcinogenicity of BDE is not currently
possible because of a lack of human exposure studies
and animal bioassays. In vitro investigations have pro-
vided mechanistic associations between components of
FDE and the mutagenic and genotoxic effects of FDE ex-
posure, but the classification of FD emissions as carcino-
genic to humans (Group 1) by the International Agency
for Research on Cancer was enabled by sufficient evi-
dence being available from epidemiological studies and
animal carcinogenicity assays [54].
Regardless of the type of diesel fuel, genotoxicity is

mainly associated with the particulate fraction [32]. In an
early study, comparison of organic extracts of a BDE with

a FDE found that the former had approximately half the
bacterial mutagenic activity of the latter, a reduction that
correlated with decreased concentrations of PAHs and
nitro-PAHs [55]. Some, but not all, combinations of fuel
and engine type result in lower concentrations of particu-
late emission for BD or BD blends than for standard FD
fuels, accompanied by lower bacterial mutagenicity [32].
Much of the mutagenic activity is associated with PAHs
and with nitro-PAHs. Under oxidative or nitro-reductive
conditions, organic extracts of FD and BD emissions gen-
erate DNA adducts in vitro, with properties compatible
with those of adducts formed by PAHs and nitro-PAHs
[56]. In one study, adduct formation by a BD blend was ~
50% of that of conventional diesel [56], but in another,
DNA adduct formation by extracts of particulates from
rapeseed oil combustion emissions was comparable to that
of conventional diesel emissions [57].
When generated from a diesel engine fitted with a cata-

lyst, an RME BDE, but not a hydrogenated vegetable oil
(HVO) BDE had lower particulates than a FDE and lower
genotoxicity, measured by the comet assay, in RAW 264.7
macrophages [58]. This was accompanied by lower forma-
tion of reactive oxygen species (ROS). Not all studies have
found lower activity than BDE than with FDE. A compari-
son between BDE and FDE from light-duty engines found
similar ROS production and comet formation in A459
cells [59]. When organic extracts of particle emissions of
different biodiesel blends were tested in human bronchial
epithelial BEAS-2B cells, the frequency of micronucleus
formation was similar for neat biodiesel, neat diesel and a
30:70 blend of the two [60]. In an in vivo study in rats, in-
halation exposure resulted in induction of detectable
levels of bulky DNA adducts in the lungs in the case of
FDE, but not with BDE, but differences in levels of
8-oxodGuo in DNA by the two emissions sources were
not observed [61].
Consistent with the notion that FDE stimulates inflam-

matory and oxidative stress responses in pulmonary cells
[62], it was demonstrated that the SOF of soybean alkyl
ester PM was a more potent inducer of IL-6 and IL-8 se-
cretion than the equivalent extract of FDE-PM in
BEAS-2B bronchial epithelial cells [63]. This observation
was supported by data demonstrating that emissions pro-
duced from a 50% RME blend also induced greater cyto-
toxicity and IL-6 release than FD-derived counterparts in
BEAS-2B cells, even in the presence of a DPF. Interest-
ingly, the authors of this study demonstrated that their re-
sults were dependent on the data being normalised to
distance driven during sample collection, indicating that
rate of particle emission is an important metric to con-
sider during dosing [64]. In THP-1 monocyte-derived
macrophages, PM from B20 soy methyl ester (SME) in-
duced stronger toxicity than FDE-PM, as determined by
quantification of ROS 1-2 h post-exposure [29]. Similarly,
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particles produced from HVO stimulated a more potent
dose-dependent increase in TNF-α and MIP-2 secretion
than FDE-PM in RAW 264.7 cells, reaching statistical sig-
nificance after exposure to 50 μg/ml doses rather than
150 μg/ml. While RME particles also induced
dose-dependent increases in TNF- α and MIP-2 secretion,
the response was significantly less than for FDE-PM or
SME BD [58] indicating variable inflammatory potency for
BD produced from different feedstocks.
Regarding the ranking of FD and BD potency, consider-

able inter-study discrepancies have been observed in vivo.
In a murine model, Yanamala et al. observed that PM from
pure fatty acid methyl ester (FAME) emissions induced
cellular infiltration into the lung to a significantly greater
extent than FDE-PM. This inflammatory response was
characterised by neutrophilia 1-day post-exposure,
followed by macrophage influx at the 7-day timepoint. In
addition, reductions in pulmonary cell viability were ob-
served at an earlier timepoint after BD exposure (1 day,
compared with 7 days for FD) and markers of oxidative
damage (4-hydroxynonenal protein carbonyls) and
remained visible for a longer period (28 days) [65]. While
Fukagawa et al. also reported that mice exposed to PM
from a B20 SME blend had greater levels of protein car-
bonyls in their lungs than mice exposed to FDE-PM, they
did not detect fuel-dependent differences in cellular infil-
tration with the airways, as assessed by bronchoalveolar
lavage [29]. In further contrast, studies performed by the
U.S Environmental Protection Agency (EPA) found
FDE-PM exposures to be more toxic than BDE-PM expo-
sures, with mice exposed to FDE-PM for 4 h exhibiting an
8-fold increase in pulmonary neutrophil influx and MIP-2
secretion than mice exposed to PM2.5 from B20 or B100
SME blends (at 500 μg/m3 doses only) [66]. Using a model
of Wistar Kyoto rats, the EPA also demonstrated that FDE
induced greater pulmonary injury (as determined by in-
creased BALF GGT activity) than BDE (100% or 20%
blend) following 24 h exposures and increased neutrophilia
after dosing for 4 weeks [67]. As with their murine study
[66], these effects were only visible at the highest tested
dose (500 μg/m3) [67] so may not be especially representa-
tive of real-world exposures which are estimated to fall be-
tween 15 and 20 μg/m3 for urban roadside PM2..5 [68].
Despite this, it may be useful to note that FDE-PM but not
PM from B20 or B100 SME blends increased proliferation
of resting peribronchiolar lymph node cells and produc-
tion of T helper cell cytokines in a murine model of aller-
gic inflammation after 4 weeks of repeated exposure at
500 μg/m3 doses [39]. Such data demonstrate the possibil-
ity that BDE is less likely than FDE to induce allergic re-
sponses in individuals with allergic airway conditions.
Both in vitro and in vivo, these inter-study discrepancies

have been attributed to differences in the fraction of ex-
haust tested. In human alveolar epithelial cells, apoptosis,

viability and inflammatory responses have all been shown
to be altered adversely by the presence of exhaust gases,
[69] with semi-volatile extracts reducing viability to a
greater extent than PM in the case of palm FAME [70].
The physicochemical properties of particles have also been
considered, with particle surface area, transition metal
content and mass concentration and diameter all being
shown to contribute to inflammatory and cytotoxic poten-
tial in vitro [69] [71]. Such parameters may vary with
choice of engine type, percentage blend of fuels [70], in-
clusion of emission modifying technologies [58, 64] and
driving conditions [72]; factors that can introduce
inter-study differences to both the BDE and FDE samples.
Additionally, the choice of feedstocks may influence
BDE-PM characteristics considerably; fuels derived from
waste cooking oil for example, are chemically distinct to
those produced from raw vegetable oils due to the array of
thermolytic reactions that modify the feedstock during
heating [73]. Furthermore, pollutant samples produced by
splash blending of pure fuels to achieve B20 and B50
blends (as employed in the EPA studies) tend to exhibit
linear increases in BD-specific chemical components as
BD content increases while commercially available blends
do not [33]. While these linear relationships may assist re-
lation of toxicological endpoints to specific emission com-
ponents, it is important to consider that splash-blended
fuels can contain novel components [33], thus PM from
splash blended B20 could cause different biological effects
to PM from commercial B20.
Adding to variation between in vivo analyses, are pos-

sibilities of species-dependent threshold effects. Rodent
models of particle exposure are susceptible to pulmon-
ary overload (a progressive reduction in particle clear-
ance caused by loss of motility in alveolar macrophages
that results in chronic inflammation, fibrosis and
tumorigenesis [74]) as well as minimal effective dose
thresholds for particle-induced inflammatory responses
[75]. Choice of exposure methods for rodent studies can
impact on both the dose-rate (tissue-wide and compart-
mentally specific) and clearance or particles within the
lung; both factors that can influence the applicability of
threshold effects to individual models. As an example,
intratracheal instillation of TiO2 particles (especially
within the ultrafine fraction) induces significantly greater
cellular infiltration of BALF than inhalation of the same
particles, partly due to the total intended dose being ad-
ministered all at once, rather than across an extended
period [76]. Based on exposure-response curve data cov-
ering non-interventional exposures to PM doses as low
as 2 μg/m3, and observations of low rates of tumour de-
velopment in chronically particle-exposed individuals, it
has been suggested that these thresholds are not relevant
for humans [75, 77]. This raises additional questions as
to whether data from rodent models that explore
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particle potency can be applied simplistically to human
exposure scenarios or compared reliably with results
from human cohort studies. Regardless of the compo-
nents that drive these inter-study differences, their exist-
ence highlights the necessity to consider outcomes of
BDE exposure as absolute values. While comparisons
between BDE and FDE toxicity assist decision-making
regarding the option of replacing fossil fuels with renew-
able alternatives, very few studies have concluded that
BDE exposure has no adverse effects on pulmonary
health or function. As such, absolute values for BDE tox-
icity metrics may prove vitally informative for policy-
makers, indicating the maximum levels of exposure that
can be tolerated by humans. Additionally, greater atten-
tion should be paid to the metrics used to determine
particle dosing. Across the field of emissions toxicology,
convenience and desire for comparability with historical
studies has encouraged the widespread use of particle
mass for this purpose. Increasingly however, surface area
has been argued to relate better to particle-induced re-
sponses, including influx of immune cells and cytokine
secretion in mice [75] and pulmonary overload in rats
[74]. Importantly, the heightened inflammatory potential
reported with PM0.1 compared with larger particles of
equivalent composition, has been shown to disappear
when exposure doses are equalised for surface area, ra-
ther than mass [78]. Given that BDE contains consider-
ably greater proportions of PM0.1 than FDE, it may be
prudent to consider surface area as a dose metric for fu-
ture comparisons of toxicity.

Exploration of effector pathways
The contributions of prototypical inflammatory pathways
to PM-induced responses have been studied widely in
models of FDE-PM exposure. Both aromatic and polar
fractions of FDE-PM have been shown to induce nuclear
receptor factor 2 (Nrf2)-dependent heme oxygenase-1
(HO-1) expression, activation of mitogen-activated protein
kinase (MAPK) pathways and induction of NFκB signalling
in macrophages and epithelial cells [79, 80]. Similarly, re-
peat exposure to BDE-PM (produced through combustion
of a FD-BD blend) promoted oxidative stress and inflam-
mation in mice, as evidenced by increased concentrations
of macrophages in the lungs, and heightened expression of
TNF-α, NFκB, Nrf2 and HO-1 proteins [81]. Additionally,
it was shown that PM produced through combustion of
20% blends of waste-grease biodiesel (WGPM) stimulated
greater extracellular signal-regulated kinase (ERK)1/2
phosphorylation in BEAS-2B cells than FDE-PM [71].
These studies indicate that BDE-PM-induced responses
share features with other PM-induced responses in redox
sensitive signally pathways, as demonstrated through
ERK1/2 activation, can be stimulated with differential po-
tency compared with FDE-PM [71].

Focus has also moved towards characterisation of the
mechanisms by which BD-induced pathways are stimulated
in the lung. PM of varying composition have been shown
to induce airway inflammation via activation of toll-like re-
ceptors (TLR); pattern recognition receptors that stimulate
cytokine secretion, via NFκB, activating protein-1 and
MAPK driven pathways [82]. FDE-PM have been shown to
induce cytokine secretion and neutrophilia in a
TLR4-dependent manner [83], but composition-dependent
differences (including metal and endotoxin content) have
been observed in the range of TLR species with which par-
ticles interact [84], indicating that this mechanism may dif-
fer for BDE-PM. Indeed, Traviss et al. demonstrated that
WGPM exposure increased expression of TLR2, but not
TLR4 in THP-1 macrophage lysates while FDE-PM dis-
played little association with TLR2 expression [71].
In addition, combustion products have been shown to

trigger pulmonary responses by activating dormant cyto-
solic AhRs. Once bound by PAHs from the surface of
combustion particles, AhRs undergo a conformational
change that permits their translocation into the nucleus.
In terms of PM toxicity, a widely explored outcome of
this activity is induction of cytochrome P450 (CYP) en-
zymes, which play a critical role in the oxidative metab-
olism of lipophilic compounds, including PAHs
themselves. While chemically inert in their environmen-
tal form, PAHs display considerable redox activity once
oxidised by CYPs, promoting development of oxidative
stress and mutagenicity [85].
Unfiltered combustion products of a B99 blend of BD

have been shown to significantly upregulate CYP1A1 ex-
pression in human bronchial epithelial cells after 60min of
exposure to fresh, pure exhaust. Unfiltered FD combustion
products also enhanced CYP1A1 expression, producing a
statistically significant (but numerically comparable) in-
crease at a faster rate than the BDE (20min). For both fuel
types, emissions collected in the presence of diesel particu-
late filters induced considerably greater CYP1A1 expres-
sion than their unfiltered counterparts, demonstrating that
the gas and semi-volatile components of both BDE and
FDE contribute greatly to their toxicity [86] Many in vitro
studies of exhaust toxicity (and indeed, technical assess-
ments of engine emissions) employ particle mass, number
or surface area as a means of determining exposure dos-
ages, with surface area suggested to be most relevant for
assessments of pulmonary inflammation [87]. However,
the evidence that volatile exhaust components can regulate
critical aspects of the pulmonary response to PAH expos-
ure indicates that particle-focused dose metrics may not
represent the exposure-response relationship for total ex-
haust very well.
The effects that feedstock compositions have on

BDE-induced CYP1A1 expression have also been explored
in bronchial epithelial cells, demonstrating that PM
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produced from a blend of 13% HVO and 7% FAME in FD
induces CYP1A1 expression to a greater extent than PM
produced through combustion of non-supplemented FAME
and FD blends (both 7 and 20%) after both 4 and 20 h of ex-
posure [88]. This trend was observed consistently across a
dose range of 10–100 μg/ml, but occurred in contrast to
total PAH contents for the particles, indicating that specific
PAH combinations or non-PAH components contributed
to CYP1A1 expression in this model.
Focusing further on mechanisms of BD-induced CYP

activation, H441 human pneumocytes were used to in-
vestigate the potential involvement of transient receptor
potential ankyrin 1 (TRPA1) ion channels (mechanistic
contributors to PM-induced disruption of calcium
homeostasis and downstream cytokine secretion). The
data showed that while CYP1A1/1B1 over-expression
was induced BDE-PM in a dose-dependent manner (and
with far greater potency than with FDE-PM), it was not
attenuated by TRPA1 antagonists. While this indicated a
lack of relationship between TRPA1 activity and CYP ex-
pression, IL-8 secretion did decrease significantly (~
60%) in the presence of the antagonist, highlighting a
role for TRPA1 in stimulation of BDE-PM-induced in-
flammatory cascades [89].

Progression towards a global approach
Cytokine arrays
By using molecular profiling methodologies, it is possible
to obtain data with both qualitative and quantitative prop-
erties. Thus, through the assessment of large panels of
variables, molecular interactions can be explored as part
of a wider network, to determine which molecules are in-
duced, or inhibited across the time-course of a response.
Given that development and resolution of pulmonary in-
flammation are regulated by the complex interplay of pro
and anti-inflammatory mediators, application of profiling
approaches to the context of BDE exposure was led by the
performance of cytokine arrays (summarised in Table 1).
While continuing to compare the effects of exposure to
BDE with those of FD emissions, these studies enabled
novel hypotheses to be drawn regarding fuel-specific
mechanisms of inflammatory cell recruitment to the
lungs, thus offering policymakers an additional layer of
evidence to support or oppose BD usage.
Performing an early, small-scale cytometric array on

lung tissue, Shvedova et al. observed differential patterns
of cytokine expression in the lungs of mice exposed to
0–500 μg/m3 concentrations of SME exhaust or FDE for
a 4-week period [90]. The authors noted that BDE stim-
ulated MCP-1 secretion by 38% more than FDE and that
this response was consistent with Finch et al.’s observa-
tion that repeated exposure to BDE stimulated macro-
phage recruitment to rodent lungs [50]. As this response
occurred in parallel to increased expression of IL-12p40,

in the absence of an IFNγ, response with BDE exposure,
the group hypothesised that BDE (but not necessarily
FDE), induced macrophage activation via non-classical
pathways. They also demonstrated that both exposure
types induced increases in cytokine accumulation in the
liver but that these effects were less pronounced than
those observed in the lungs [90].
Several larger array platforms have been adopted to

explore BDE and FDE toxicity, offering the distinct ad-
vantage of a more comprehensive qualitative range. In-
deed, Yanamala et al. detected significant elevations of
17 cytokines and chemokines in murine pulmonary tis-
sue following acute exposure to an 18 μg/mouse bolus of
FAME exhaust PM (B100); a signature that translated
closely to bronchoalveolar lavage fluid (BALF) [65] and
was concordant with the induction of IL-12p70, IL-6,
MCP-1 and TNFα secretion that was reported by Shve-
dova et al’s smaller scale SME study (Table 1). Yanamala
et al. also observed evidence that BDE-PM induced se-
cretion of ten cytokines and chemokines acutely, whilst
FDE-PM did not [65]. This indicated that BDE-PM in-
duces a more complex inflammatory cascade than
FDE-PM; with the authors suggesting potential contribu-
tions of allergic inflammation and type 2 T helper cell
responses [65]. Furthermore, the study demonstrated
that IL-1a and IL-12p40 concentrations remained ele-
vated 7 and 28 days after inoculation with BDE-PM, but
not FDE-PM, indicating that BDE promotes a more pro-
longed pulmonary response [65].
Fukagawa et al. [29] used cytokine arrays to explore the

effects of exposure to exhaust from commercially relevant
B20 BD blends. Analysing the pulmonary tissue and BALF
of mice, the authors demonstrated that repeated exposure
to combustion particles from B20 SME (84 μg/ treatment
over 3 days) induced pulmonary secretion of G-CSF, IP-10
and IL-6. While variations in study design and sample col-
lection prevent a simple comparison of these results with
those of Shvedova et al.’s murine study of exposure to PM
from 100% SME [90], the authors did demonstrate that
FDE-PM did not alter pulmonary cytokine profiles when
compared with controls, despite inducing comparable BALF
cell profiles to the B20 sample. This observation illustrates
the value of board-based molecular investigations to com-
prehensively characterise the impacts that BDE-specific
components have on pulmonary cells and is supported by
the group’s observations in vitro. Using THP-1 and
BEAS-2B cell lines, the group demonstrated that B20
BDE-PM and FDE-PM induce differential responses to one
another in both macrophages and bronchial epithelial cells.
A major concern for assessments of pollutant inflammo-
genicity is the ability of carbonaceous particles to bind cyto-
kines, reducing the effective concentration during
processing, thus risking introduction of type II errors during
cytokine/chemokine quantifications [91]. Importantly,
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Table 1 Documented cytokine secretion profiles for pulmonary cells or tissues following exposure to biodiesel emissions

Study Malorni et al. 2017 [92] Fukagawa et al. 2013 [29] Yanamala et al. 2013 [65] Shvedova et al.
2013 [90]

Exposure 20% FAME
PM0.1 (organic fraction)

20% SME
Total PM

100% FAME
Total PM

100% SME
Total PM

Model A549 THP-1 BEAS-2B Mouse lung Mouse BALF Mouse lung Mouse BALF Mouse Lung

bFGF ↓ – – N N – – N

CCL5 (RANTES) N N N N N ↑ ↑ N

CXCL1 (KC) N N N – – ↑ ↑ N

CXCL9 (MIG) N N N N N ↑ ↑ N

Eotaxin ↓ – – N N ↑ – N

G-CSF ↓ ↑ – ↑ ↑ ↑ ↑ N

GM-CSF – – – – – – – N

IL-10 – – – – – – – ↑

IL-12p40 – – – N N ↑ ↑ N

IL-12p70 – – – – – ↑ ↑ ↑

IL-13 – – – – – – – N

IL-15 ↓ – – – – – – N

IL-17 ↓ – – – – – – N

IL-18 N N N N N – – N

IL-1α N N N – – ↑ ↑ N

IL-1β – – – – – ↑ ↑ N

IL-1ra – – – N N N N N

IL-2 ↓ – – – – – – N

IL-3 N N N N N – – N

IL-4 – – – – – ↑ ↑ N

IL-5 – – – – – – – N

IL-6 ↓ – – ↑ ↑ ↑ ↑ ↑

IL-7 – – – – – N N N

IL-8 – – ↑ N N N N N

IL-9 – – – – – – – N

IFNγ – – – – – – ↑ –

IP-10 ↓ – – ↑ ↑ – – N

LIF N N N N N ↑ – N

MCP-1 – – ↑ – – ↑ ↑ ↑

M-CSF N N N – – – – N

MIP-1α – – – – – ↑ ↑ N

MIP-1β – – – N N ↑ ↑ N

MIP-2 N N N N N ↑ – N

PDGF ↓ – – N N ↑ – N

TNF-α – – – – – – ↑ ↑

VEGF – – – N N – – N

↑ represents statistically significant increase in secretion compared with particle-free controls while ↓ represents statistically significant decreases in secretions. – demonstrates
no statistically significant change in secretion compared with non-exposed controls and N indicates instances where a cytokine species was not measured. Basic Fibroblast
growth factor (bFGF), Chemokine (C-C-motif) ligand (CCL), Chemokine (C-X-C motif) ligand (CXCL), Granulocyte-colony stimulating factor (G-CSF), Interferon-γ neutralising
(IFNγ), Interferon-γ-induced protein 10 (IP-10), Leukaemia inhibitory factor (LIF), Monocyte chemoattractant protein-1 (MCP-1), Macrophage colony stimulating factor (M-CSF),
Macrophage inflammatory protein (MIP), Platelet-derived growth factor (PDGF), Tumour necrosis factor-α (TNF-α), Vascular endothelial growth factor (VEGF)
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Fukagawa et al. used a cell-free system to demonstrate that
neither particle species altered the concentration of cytokine
standards, indicating that the observations were products of
true interactions between the particles and the cells [29] ra-
ther than artefacts of differential particle composition.
Evidence that the physicochemical properties of particu-

lates influence their toxicity was reported by Malorni et al.
who demonstrated that particles with an aerodynamic
diameter of less than 10 nm from either B20 FAME or pure
FD emissions (1.2 or 4 ppm) inhibited cytokine secretion
globally in A549 epithelial cells, [92]. Based on data col-
lected for 27 targets (Table 1), the authors suggest that the
small size of the particles was responsible for this, facilitat-
ing interference with mechanisms of protein synthesis or
secretion, alternatively, that the assay had captured nega-
tive feedback loops following initial elevations in cytokine
secretion [92]. It should however be noted that A549 ex-
press unusually high levels of HO-1 and Nrf2 [93] and that
cells cultured under standard laboratory conditions experi-
ence a high basal layer of oxidative stress [94] so may re-
spond differentially to oxidative stimuli compared with
cells in vivo. Once again, the authors report
biodiesel-specific alterations to the cellular cytokine profile.

Transcriptomics
To characterise a mild inflammatory response in the
lungs of rats exposed to 20% blends of RME BDE for 7
or 28 days, the expression of 32 genes in pulmonary tis-
sue was measured [95]. This semi-targeted approach
drew upon the multivariate nature of transcriptomic
analysis, but focused only on genes that are known to
encode mediators of inflammatory pathways (including
cytokines, antioxidants and xenobiotic metabolising en-
zymes) limiting the potential of the study to generate
new hypotheses regarding exposure-induced response
mechanisms. Indeed, of the four significant transcrip-
tional changes observed, two (dysregulation of super-
oxide dismutase and glutathione peroxidase expression)
have been associated with BDE exposure previously [61,
96]. In contrast, evidence that BDE induced expression
of β-2 adrenergic receptors (β2AR) [95] was novel. Given
that PM2.5 has been shown to induce IL-6 secretion in
macrophages by stimulating β2ARs [97], this result may
encourage innovative research into ion channel activity
during BDE-induced inflammatory responses.
The first genome-wide transcriptomic analysis of

BDE-induced toxicity helped resolve the difficulties in
inter-study comparison that surrounded previous
hypothesis-driven analyses. To detect mechanisms of
toxicity that are common to different types of exhaust
particulate, Libalova et al. used standardised methods of
particle collection and cellular exposure to study global
changes in bronchial epithelial cell gene expression fol-
lowing exposure to the organic fractions of exhaust

particles produced through combustion of RME (100 and
30% blends), FD or pure NEXBTL (a combination of
HVO and waste animal fat) PM. Due to the genome-wide
scope of the array (performed using Illumina
Human-HT12 v4 Expression BeadChips), the group were
able to demonstrate that RME-derived organic matter al-
tered expression of more genes than samples obtained
from NEXBTL and that the extent of transcriptomic
changes heightened with increasing RME:FD ratios in the
parent fuels (from 0 to 100%) after 4 h exposure. Add-
itionally, the experiment captured the transient changes
in gene expression profiles during acute responses to par-
ticle extracts. After 4 h of exposure, many transcriptomic
changes were induced in common by each of the tested
PM fractions, influencing antioxidant defences, xeno-
biotic/ lipid metabolism, suppression of apoptotic stimuli
and blood clotting. After 24 h however, far fewer genes
and pathways were dysregulated by all particles and a
greater number of fuel-specific dysregulated genes were
observed (especially for the 30% RME blend). Most of
these fuel-specific changes associated with NEXTBL ex-
posure, indicating that PM produced by combustion of
this BD altered expression of genes required to regulate
cell cycle progression [98].
Similarly, RME emissions were shown to alter the ex-

pression of genes required for cell cycle progression in
mice [61]. Pathway analysis (using Ingenuity Pathway
Analysis software (IPA)) also associated exposure to RME
and FD emissions with ‘metabolic disease, neurological
disease, psychological disorders’. However, as discussed by
the authors, IPA analyses depend upon the size of feature
lists to estimate network scores and may not provide ac-
curate representations of dysregulated pathways. Indeed,
analyses performed with Pathway Studio software offered
considerably different results, associating exposure to FD
(but not RME) emissions with dysregulation of genes re-
quired for DNA repair pathways. This output contrasted
with that produced by IPA but was supported by evidence
that FDE induced development of acrolein adducts and in-
duction of phosphorylated histone H2AX genotoxicity
markers [61], highlighting the importance of selecting ap-
propriate bioinformatic workflows.
It must be noted that molecular responses to particulate

insult can occur downstream and independently of the
transcriptome. For example, residual oily fly ash, urban
dust and volcanic ash directly inhibit the activity of anti-
oxidant enzymes with capacities that reflect their relative
toxicity in vitro [64]. Mechanisms such as these would be
excluded from characterisations of particle toxicity if tran-
scriptomic screens were studied alone. Additionally, many
ambient particulate species induce degradation of oxidised
proteins [99] indicating that not all transcriptional events
will yield protein-level activity under conditions of
particle-induced oxidative stress.
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Metabolomics and mass-spectrometry based profiling
As the product of upstream molecular events, the metabo-
lome is considered an important source of mechanistically
relevant biomarkers for cellular activities that can be ex-
plored alongside the transcriptome or proteome. Compared
with these analyses however, production of comprehensive
metabolomic profiles is challenging. Properties such as po-
larity or volatility require molecular subsets to be quantified
through distinctly optimised platforms and annotation of
metabolites in the resulting spectra is far from complete. A
multi-platform approach has been used to measure the
changes that BDE exposure induces upon the pulmonary
metabolome; combining 1H nuclear magnetic resonance
spectroscopy (1H NMR), liquid chromatography-mass
spectrometry (LC-MS) and gas chromatography-mass spec-
trometry (GC-MS) methods to identify markers of BDE
toxicity in human bronchial wash (BW) and BALF samples
[100]. By profiling distinct molecular subsets, this use of
complimentary methods greatly enhanced the number of
metabolites that were detected in the samples; a feature that
related directly to the number of pathways that were associ-
ated with BDE exposure via pathway enrichment analysis.
While requiring validation, connections between these
pathways and BDE exposure were novel, implicating deg-
radation of cell membrane lipids as a driver of the response
alongside alterations in energy metabolism [100]. Import-
antly, the analysis demonstrated that BDE-induced alter-
ations to pulmonary metabolism were highly compartment
specific, with concentrations of individual metabolites dif-
fering significantly between the BW and BALF and a stron-
ger response being detectable for peripheral regions of the
lungs [100]. Extending this work, Gouveia-Fugueira et al.
showed that human BW and BALF samples could be differ-
entiated by their lipid mediator profiles with concentrations
of prostaglandin- E2, 12,13-dihydroxy-9Z-octadecenoic
acid, and 13-hydroxyoctadecadienoic acid being signifi-
cantly elevated in BALF following exposure to BDE [101].
Given that these metabolites and inflammatory lipids are
the products, substrates, intermediates and regulators of
cellular reactions, this evidence provides a sturdy rationale
for focusing on responses in the peripheral airways – an as-
sumption that is often made based on estimated deposition
patterns for similarly sized particles [102].

Future directions
Performance of omics-led experimentation has consider-
ably advanced characterisations of the mechanisms that
underlie BDE-induced toxicity (Fig. 2). Indeed, with the
large range of platforms available for molecular profiling,
it will be possible to identify novel pathways and regula-
tors of toxicity and to make comprehensive comparisons
between the molecular interactions that associate with
BDE and FDE. As a starting point, expansion of metabo-
nomic studies may be especially useful; as not only do

metabolites incorporate the series of molecular events that
occurred upstream of their synthesis (including epige-
nomic control of gene expression, post-translational modi-
fications etc) but, as products of enzymatic reactions, they
demonstrate those molecular events which have already
occurred in samples. Subsequently, genomic, transcrip-
tomic or proteomic data would be greatly useful further
along the characterisation process where information re-
garding the origin of pathway dysregulation is required,
though significant computational and statistical challenges
exist in bring these large data sets together. Here, add-
itional screens such as epigenetic or microRNA profiling
will provide complementary information regarding the
mechanisms by which gene transcription or protein syn-
thesis are dysregulated by exposure.
Although availability of human lung tissue is limited

by the invasive nature of biopsy, the multi-platform
metabolomic screens performed have demonstrated that
metabolite markers of pulmonary responses to BDE ex-
posure are detectable outside of the tissue itself [100].
While collection of BALF or BW remains an invasive
procedure, urine and plasma (both rich in metabolite
species) can be harvested quickly and painlessly, pro-
moting greater participant recruitment for studies. Me-
tabolite biomarkers of inflammatory and oxidative stress
responses to cigarette smoke and metallic welding fumes
have been detected previously in human urine and blood
[103, 104], indicating that these samples have potential
as sources of mechanistically relevant biomarkers for
pulmonary responses to other particulates. Should simi-
lar urinary or blood biomarkers be identified following
BDE exposure, adverse outcomes of exposure to the pol-
lutant could be detected and monitored in large human
cohorts, enhancing the representability of characterised
mechanisms to the population in general and permitting
detection or exploration of the response in high suscep-
tibility groups, including those with existing pulmonary
conditions where non-critical, invasive procedures are ill
advised [105].
Integration of omics approaches to encompass mul-

tiple molecular species could expand the number of
pathways that are bioinformatically associated with ex-
posure by generating a greater number of novel hypoth-
eses. Indeed, the detection rate of mechanistically
relevant pathways resulting from responses to chemo-
therapeutics was improved by 76% by integrating tran-
scriptomic and metabolomic features during pathway
analysis [106]. Considering that the incidence of type I
errors increases with the number of variables that are in-
put into a pathway analysis, complementary screens also
provide the important function of cross-validation. The
observation of a hierarchical proteomic response to
FDE-PM exposure for example, has been validated at the
transcriptional level by evidence that mid-range
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concentrations of FDE-PM induce expression of genes
that encode pro-inflammatory mediators but not anti-
oxidant enzymes in rat macrophages [107].
Finally, it would be prudent to apply profiling tech-

niques to the exploration of non-classical models of pul-
monary exposure, widening our understanding beyond
responses of the airway epithelium and innate immune
system. For example, possible neuronal responses to
BDE exposure were highlighted by transcriptomic ana-
lysis of mouse lung (associating RME emission exposure
with ‘neuronal disease’ pathways) and the discovery that

the SOF of BDE-PM agonises TRPA1 activity [89].
Comprehensive studies of molecular alterations within
pulmonary neurons could greatly enhance the breadth of
our characterisations of BDE-induced pulmonary
toxicity, potentially providing novel explanations of how
exposure may trigger respiratory reflexes.

Conclusions
Introduction of omics strategies to the characterisation of
toxicity pathways has greatly progressed our understand-
ing of how human lungs respond to BDE. Moving away

A

B

Fig. 2 General overview of known molecular and cellular features of pulmonary responses to BDE exposure, including details detected via targeted (a)
and untargeted (b) experimental approaches in samples harvested from human cohorts or in vitro and in vivo models of human and rodent airways
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from hypotheses inspired by our knowledge of how the
lungs respond to FDE, profiling methods have identified
mechanistically informative, fuel-specific molecular signa-
tures. Importantly, they have also highlighted mechanisms
beyond those that we traditionally associate with particu-
late exposure, which could encourage exploration into the
roles of additional pathways and physiological systems.
Such outcomes are difficult to achieve using traditional
toxicological testing but would be highly beneficial
throughout the field of particulate toxicology. The most
recent air quality proposals (such as the UK Clean Air
Strategy 2018) pledge to address a range of pollutant
sources much wider than the transport combustion engine
[108]. Characterisations of the toxicity posed by many of
these particles are in their infancy but, with the breadth of
information that omics screens offer, policy makers could
be provided with a more detailed understanding of how
the different particles impact the lungs, and whether some
cause more diverse toxicities than others. This informa-
tion could assist targeting of regulatory efforts to those
pollutants that pose the greatest risk to public health
and help to prevent unexpected consequences by focus-
ing on new fuels, or engine technologies that may offer
solutions to current problems but introduce a new set
of problems. The history of air pollution regulation is
littered with such examples [109], with the European
policies of the mid-1990s promoting the uptake of
diesel vehicles being the clearest contemporary ex-
ample. Embracing the advances in multi-omics tech-
nologies, allied to traditional hypothesis-led approaches
to address the safety of new fuels presents the oppor-
tunity to develop evidence-based pollutant mitigations
strategies, rather than simplistic fixes that often fail to
consider the health of the population.
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