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Abstract

Background: Air pollution, mainly from combustion, is one of the leading global health risk factors. A susceptible
group is the more than 200 million people worldwide suffering from chronic obstructive pulmonary disease
(COPD). There are few data on lung deposition of airborne particles in patients with COPD and none for
combustion particles.

Objectives: To determine respiratory tract deposition of diesel combustion particles in patients with COPD during
spontaneous breathing.

Methods: Ten COPD patients and seven healthy subjects inhaled diesel exhaust particles generated during idling
and transient driving in an exposure chamber. The respiratory tract deposition of the particles was measured in the
size range 10-500 nm during spontaneous breathing.

Results: The deposited dose rate increased with increasing severity of the disease. However, the deposition
probability of the ultrafine combustion particles (< 100 nm) was decreased in COPD patients. The deposition
probability was associated with both breathing parameters and lung function, but could be predicted only based
on lung function.

Conclusions: The higher deposited dose rate of inhaled air pollution particles in COPD patients may be one of the
factors contributing to their increased vulnerability. The strong correlations between lung function and particle
deposition, especially in the size range of 20-30 nm, suggest that altered particle deposition could be used as an
indicator respiratory disease.
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Background
More than 200 million people suffer from chronic ob-
structive pulmonary disease (COPD) and of these 3 mil-
lion die each year [1,2]. Today the disease is the fourth
most common cause of death globally and it is predicted
to become the third within the next decade. One crucial
consequence of COPD is an increased susceptibility to
air pollution, which could be partly related to a deviation
in the uptake of airborne particles during breathing. Air
pollution in urban and indoor environments is one of
the leading global adverse health factors [3]. Most of
these air pollution particles originate from combustion.
The two most important individual characteristics de-
termining the probability of an inhaled particle to de-
posit in the lungs are breathing pattern and lung
morphology. Both these are substantially altered in
patients with COPD. Nevertheless, few studies are avail-
able on respiratory tract particle deposition in COPD
patients in the size range below 1 um, where much of
the ambient airborne particle pollution is found [4-6].
Of these studies, only one investigate a size range which
partly covers typical ambient aerosol (20-240 nm, [4]),
while the other two examines particles of a single size
(33 nm and 100 nm, respectively, [5,6]). Two of these
three studies employ controlled pre-determined breath-
ing patterns and are therefore difficult to use for estima-
tion of real-world exposure. Since just one of the studies
([5], using 33 nm particles) varied flow rates while the
others kept them constant, relationships between breath-
ing pattern and deposition are not easy to establish.
Thus, several important aspects of the deposition of par-
ticles in COPD patients require further examination. The
probability of an inhaled particle to deposit in the lungs
may vary from more than 80% for particles smaller than
30 nm in diameter to below 20% for particles around
500 nm. For particle sizes other than 33 nm, deposition in
COPD during spontaneous breathing is still unclear. Mea-
surements on lung deposition of particles likely to be

300000 - =<

/" —ldleengine
7 \, ---Transient driving
—_ ; \
(?E lll \\
S 200000 - / \
8- lll “\
= / \
o ! \
§ / \
2 100000 - / |
o
0 === T "
10 100 1000

Dry mobility diameter (nm)

Figure 1 Size distributions of the diesel exhaust particles
(DEPs).
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found in the environment, such as those from combustion
sources, have not been performed in COPD.

The objective of this work was to experimentally investi-
gate the respiratory tract deposition in COPD patients for
two types of diesel exhaust particles (DEPs) in the range
10 to 500 nm during spontaneous breathing and to seek
relationships between deposition, breathing parameters
and lung function (static and dynamic spirometry, includ-
ing diffusion capacity). DEPs were used because they are
ubiquitous in the urban atmosphere, have a well-
characterized toxicology and are described to cause ad-
verse respiratory and cardiovascular responses [7-10]. It
has also been shown that DEPs in the range 10-300 nm
have a similar deposition probability for healthy subjects
as spherical hydrophobic particles of similar mobility
diameter [11]. Epidemiological studies have linked
exposure to DEPs with increased COPD mortality [12].

Results

Diesel exhaust particles

The respiratory tract deposition of DEPs from both idling
engine and simulated transient driving was investigated

Table 1 Subject demographics, pulmonary function data
and breathing parameters (Mean + SD)

Healthy (n=7) COPD (n=10)
% predicted

% predicted

Age (yrs) 30+8 67+7+

Gender 2 M/5F 7M/3F

Height (cm) 168+9 171+7

Weight (kg) 63+5 73+10%

Pack years 0 44+ 19

FEV; () 3714096 107412 18040455 66+ 16
FEV,/FVC 079004 95+4 049+008" 65+10F
FVC (L) 444+109 110£10 28540637 81+18
VC (L) 469+121 115+14 3694077  102422%
TLC (L) 613131 109411 69+09 112412
RV (L) 140+0.20 3244058

RV/TLC 0.24+0.04 047 +008*

PEF (L/s) 815+166 105+7 5511707 75+20"
MEF50 (L/s) 402+114 85+21 078+033% 20+8*
MEF25 (L/s) 156+0.54 0.17 +006"

DLco(SB)? 846+199 92+13 514 4064 62+12"
DLco/VA ° 1654006 92+3 096+0.19F 70+11%
MV (L/min) 84+15 106+29

f (breaths/min)  10.7+36 13.1+34

Vr (L) 086+ 026 0.86+0.28

Abbreviations: MEF25/50 = maximum expiratory flow rate at 25% and 50% of
VC respectively, DLco(SB) = single-breath diffusion capacity for CO [mmol/min/
kPa], DLco/VA = diffusion capacity normalized to lung volume [mmol/min/kPa/
L], MV = minute ventilation, f = breathing frequency, V;=tidal volume.

*p <0.05, 'p < 0.01, ¥p <0.001.

? n=5 for healthy subjects.
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(Figure 1). Idling engine emitted a bimodal aerosol
consisting of a nucleation mode with geometric mean
diameter (GMD) at 16 nm (geometric standard deviation,
0y 1.52) and an accumulation mode with a GMD of
75 nm (og 1.98). The particles from transient driving were
unimodal with a GMD of 88 nm (o, 1.97). Number con-
centrations were 82000+22000 cm™ for idling and
222000 + 13000 cm™ for transient driving. Further informa-
tion about the aerosols is provided in the online Additional
file 1 and in a previous publication [11].

Subject characteristics

Subject demographics, breathing parameters and pul-
monary function data of the subjects are summarized in
Table 1. The subjects with COPD had a significantly
lower FEV,/FVC, FEV,;, DLco/VA and PEF than the
healthy group. Diffusion capacity of carbon monoxide
(DLco) was not obtained from two of the healthy sub-
jects. Some of the healthy subjects breathed with a lower
frequency, f, and a higher tidal volume, Vp, than
expected at rest [13]. The spontaneous breathing of the
COPD patients was in reasonable agreement with esti-
mated normal values [14]. One healthy subject was
excluded because breathing was considered forced
(f=4.5 breaths/min, V+=2.7 L).

Deposition fraction, DF

The deposition fraction (DF) was calculated from the dif-
ference between inhaled and exhaled particle concentra-
tions (see Method section, online Additional file 1 and
previous publications [15] for details). Each subject had a
similar DF for both types of DEPs, which is expected
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Figure 2 Measured size-dependent deposition fractions of
diesel exhaust particles (DEPs). Data are shown as group means
of both types of DEPs for healthy subjects and COPD patients. For
comparison, the deposition fractions are also shown for spherical
hydrophobic oil particles for healthy subjects in a previous study
(Londahl et al. 2007). Bars indicate standard deviation between
subjects.
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considering the physical and chemical characteristics of
the particles [11]. The similar DFs for both exposures also
indicate a repeatable behavior of the subjects combined
with stability of the experimental set-up. For this reason,
the DFs were averaged for the two types of DEPs in the
following analysis, if not stated otherwise.

For most the ultrafine particles size range (< 100 nm),
the DF of inhaled DEPs was significantly lower in COPD
patients compared to the healthy group: below 80 nm with
p < 0.05 and below 50 nm with p <0.001 (Figure 2). For
particles larger than 100 nm, the DF was equal or higher
in the COPD patients, but differences were not significant.

The DF may be calculated not only as the size
dependent value, but also as a total DF meaning the
fraction of the complete aerosol that is deposited. Unlike
the size dependent DF, the total DF is partly determined
by the particle size distribution. Table 2 shows values of
the total DF by number, surface area and mass of the
two types of DEPs. The only significant difference is the
total DF of the DEPs by number (p < 0.05). The surface
area and mass of the DEPs are dominated by the larger
particles (100—500 nm) and for these the COPD patients
and the healthy group had a more similar DF.

Breathing pattern, lung function and DF

Although each subject had a similar DF for both types of
DEPs, there was considerable variability in DF between
the subjects: 0.6-0.9 for 20 nm particles and 0.1-0.2 for
500 nm particles. The variability was related to differ-
ences in both breathing pattern and lung function
(Table 3 left column). Correlations were typically stron-
ger for smaller sized particles. No significant correlations
were found between DF and breathing pattern or lung
function for particles larger than 100 nm. The associa-
tions shown in Table 3 for 20-30 nm particles were
similar for particles in the range 30-100 nm, but typic-
ally with a lower level of significance. Notably DF of 20—
30 nm particles was strongly positively correlated with
lung function deviations characteristic for COPD: FEV,
(r=0.59, p=0.01), percentage predicted FEV; (r=0.59,
p=0.01), FEV,/FVC (r=0.79, p=0.00002), percentage
predicted FEV;/FVC (r=0.79, p=0.0001) and diffusion
capacity of carbon monoxide, DLco/VA (r=0.61,

Table 2 Total measured deposited fraction (mean £ SD)

Total deposition fraction

Number Surface area Mass
Idle Healthy 0.64+0.06 030+0.06 027+0.06
COPD 0.57 £0.05* 0.28+0.04 0.29+0.04
Transient Healthy 047+0.08 0.27+0.07 0.27+0.07
COPD 040+0.05% 026+0.04 026+0.04

*p < 0.05 for COPD compared to healthy group.
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Table 3 Pearson’s correlation coefficients (r) between
subject characteristics and deposition fraction (DF) of 20-
30 nm particles of DEPs and deposited dose rate by mass

DF 20-30 nm Dose rate (mass)
FEV, 0.59* -0.26
FEV;, % predicted 0.59* -048
FEV,/FVC 0.79% —0.59*
FEV,/FVC, % predicted 079* —057*
FVC 047 -003
FVC, % predicted 042 -040
TLC -0.32 065"
RV —-057* 0.54*
RV/TLC ~0.50* 030
PEF 0.60* 0.006
MEF50 058* —046
MEF25 0617 -045
DLco(SB) 039 -063*
DLco/VA 061% —081%
DLco/VA, % predicted 048* -0.70"
Pack years —0.60* 042
MV —064 077+
f 0717 028

*p < 0.05, 'p < 0.01, *p <0.001.

Associations between DF and subject characteristics for all ultrafine particles
(< 100 nm) were similar to 20-30 nm particles, but usually with a lower level
of significance. No significant correlations were found for particles larger than
100 nm. DF and mass dose are averaged for diesel exhaust particles (DEPs)
generated during both idling and transient driving.

p=0.02). The correlation between DF and FEV;/FVC is
illustrated in Figure 3.

COPD patients with emphysema typically have an
increased residual volume (RV) as was the case for the par-
ticipants in this study. There was a clear negative correl-
ation between RV and DF of 20-30 nm particles (r = -0.57,
p=0.02). This indicates that emphysema decreases depo-
sition probability of inhaled ultrafine aerosol particles.

Breathing frequency and minute ventilation, but not
tidal volume (Vr), correlated significantly with DF in
the ultrafine particle size interval (Table 3). Increases
in breathing frequency and minute ventilation were
associated with decrease in DF of ultrafine particles
(p <0.005). No associations between DF and breathing
pattern were found for particles larger than 100 nm.

Multivariate linear regression analysis suggested that
DF of the ultrafine particles (20-100 nm) for the COPD
patients could be predicted based on particle diameter
(dp, [nm]) and FEV,/FVC:

DF(d,) = 0.51 —0.0047-d,, + 0.54 -FEV /FVC

The Pearson’s correlation coefficient (r) for this equa-
tion is 0.94.
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Deposited dose rate

The deposited dose rate here refers to the deposited
amount of particles by number, surface area or mass per
unit time. The deposited dose rates of DEPs from idle en-
gine and transient driving are provided in Table 4 and illu-
strated for particle mass in Figure 4. The deposited dose
rates are derived from the measured DFs and particle size
distribution. For determination of deposited dose rates by
surface area and mass also density of the DEPs and TEM
image-analysis were used as described in detail by Rissler
et al. [11]. Unlike DF, the deposited dose rate differed sub-
stantially between the two types of DEPs since it is partly
determined by particle size distribution.

The mean deposited dose rate tended to be higher for
patients with COPD compared to the healthy group, al-
though the difference was only significant for DEPs gener-
ated during idling (Figure 4). The reason for the elevated
deposited dose rate is that the COPD patients breathed
with higher minute ventilation (MV, Table 1) and therefore
inhaled more particles. A strong positive correlation was
found between MV and deposited mass-dose (r=0.77,
p=0.0003). However, as previously described, DF was
lower in the COPD patients for most particle sizes and
this partly counterbalanced the particle uptake.

As shown in Table 3 and Figure 5, the deposited mass
of DEPs per hour (deposited dose rate by mass)
increased with disease severity (i.e. with decrease in
FEV;, FEV,/FVC and DLco/VA). Most significant was
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Figure 3 Deposition fraction (DF) for 20-30 nm particles as
function of FEV,/FVC. Black diamonds (#) are for COPD patients,
white squares (0O) for healthy subjects. A similar association between
DF and FEV,/FVC was found over the complete ultrafine particle size
range (< 100 nm).
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Table 4 Total measured deposited dose rate when
exposure concentration is normalized to 1 pg/m?

Deposited dose per hour (if 1 ug/m?)

Number Surface area Mass
(x10) (mm?) (ng)
Idle Healthy  695+127 123+£36 0.133+£0.041
COPD 801£178 160+£3.3* 0.176 +£0.036*
Transient  Healthy ~ 350+82 19.5+59 0.131+0.040
COPD 386+83 245+63 0.164 £0.042

*p < 0.05 for COPD compared to healthy group.

the association between deposited dose rate by mass and
DLco/VA (p=0.0004, Figure 5). The inter-subject vari-
ability in deposited dose rate was larger than the vari-
ability in DF because of substantial variation in minute
ventilation. Based on the experimental results, the indi-
vidual deposited dose rates ranged from 0.09 to 0.22 pg/
hour with the particle concentration normalized to 1 pg/
m?® of DEPs.

Discussion

The respiratory tract deposition of two types of DEPs
was determined in the particle size range 10-500 nm for
COPD patients and healthy controls. In contrast to most
previous studies, in which subjects breathed according
to a pre-determined pattern, spontaneous breathing was
used here to resemble real-world exposure. It was found
that the respiratory tract deposition of DEPs was closely
associated with both breathing parameters and lung
function. The deposited dose rate increased with COPD
severity, mainly due to increased minute ventilation. The
two types of particles studied are representative for DEPs
in general as reported in several previous studies [11].
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Figure 4 Deposited particle mass during one hour (i.e. the
deposited dose rate) with exposure concentration normalized
to 1 ug/m> (mean + SD).
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Figure 5 Deposited dose rate of diesel exhaust particles (DEPs)
as function of diffusion capacity of carbon monoxide
normalized to lung volume (DLco/VA). Black diamonds (#) are for
COPD patients and white squares () healthy subjects.

Deposition fraction, DF

The size-resolved DF of DEPs for the healthy group of
subjects (Figure 1) was in agreement with previous mea-
surements for hydrophobic spherical particles [16]. The
DF has previously been determined for particles from
diesel exhaust, traffic and biomass combustion in
healthy subjects [17-19]. It was shown that the DF of
combustion particles could be predicted with high ac-
curacy (within 10%) by using the DFs for hydrophobic
particles, but with an adjustment for particle size
changes due to absorption of water vapor in the lungs
[17,18]. The relative humidity in the lungs is high,
99.5%, and therefore inhaled non-hydrophobic particles
grow by uptake of water. It is the size of the particles in-
side the lungs that determines deposition rather than the
measured dry size. The DEPs in this study were hydro-
phobic due to low sulfur content in the fuel [11]. When
the deposited dose rate is calculated, density and ag-
glomeration also must be considered [18].

Both images from electron microscopy and density
measurements showed that the DEPs were highly
agglomerated. Experiments with a cast of human lung
airways have suggested that agglomerated particles may
have a somewhat higher DF at lung bifurcations than
spherical particles with equal mobility diameters [20].
However, the difference in DF between DEPs and hydro-
phobic spheres of equal mobility size was insignificant
for human subjects (Figure 2, see also [11]). The close
similarity in DF between DEPs and spherical oil particles
is in general agreement with theory. Particles below
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300 nm in diameter deposit primarily through Brownian
diffusion — the movement caused by random collisions
with gas molecules. For hydrophobic particles in this
size range, deviations in density and shape have a minor
impact on diffusion speed and, consequently, do not
affect the DF, provided that particle size is given in mo-
bility diameter, as in this research. The mobility diameter
is the commonly used diameter for particles <0.5 pm.
For spherical particles, it is identical to the geometric
diameter (i.e. the diameter measured by a ruler on a
picture).

Breathing pattern, lung function and DF

The associations between subject characteristics and DF
were in general most significant for particles in the
range 20-30 nm, although similar trends were clear over
the complete ultrafine size range. The lower DF for
ultrafine particles in COPD could partly be explained by
variations in breathing pattern. As expected [14], the
COPD patients had a higher breathing frequency and
minute ventilation than the healthy group (Table 1). This
reduces residence time in the lungs, which decreases the
DF as less time for diffusion is available.

It is likely that not only alterations in breathing pattern
but also variations in airway morphology may reduce the
DF in COPD. According to the majority of the lung de-
position models, particles in the range 20—-70 nm deposit
by diffusion, primarily in the alveolar region. In patients
with emphysema, the air spaces are enlarged due to de-
struction of the alveolar walls [21]. As a consequence,
the particles have to travel a longer distance before de-
position. Hence, the deposition probability decreases.
Comparisons with the common ICRP model (Inter-
national Commission on Radiological Protection) are
further elaborated in the online Additional file 1.

Three previous studies have investigated respiratory
tract deposition of aerosol particles smaller than 0.5 pm
in COPD patients [4-6]. Brown et al. [5] studied the de-
position of particles with a count mean diameter of
33 nm (o, 1.7) during spontaneous breathing in 9
healthy subjects and 10 patients with COPD, whereof 7
were bronchitic and 3 emphysematic (defined as those
with percentage predicted DLco/VA < 60%). The COPD
patients with emphysema had a significantly lower DF
than the healthy group, whereas those classified as bron-
chitic had a higher. In agreement with the emphysematic
group we found a decrease in DF of ultrafine particles.

Comparison of the DF between this study and the two
studies in which pre-determined breathing patterns were
used is less straightforward. Anderson et al. [4] deter-
mined the deposition of hydrophobic 20-240 nm parti-
cles in 10 healthy subjects and 8 patients, whereof 5 and
3 had obstructive and restrictive lung disease, respect-
ively. Compared to the healthy group, they found that
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DF was increased in patients with obstructive lung dis-
ease but remained unchanged in those with restrictive
lung disease. However, the subjects with obstructive lung
disease had difficulties following the pre-determined
breathing pattern and this was suggested as a possible
explanation to the increased DF. Moller et al. [6] also
found a small increase in DF during deep inhalation, but
since an 8-second breath hold was carried out at the end
of inhalation, results are not comparable.

Several correlations were found between DF and lung
function in the present study (Table 3). Brown et al. did
not find any associations between DF and lung function
across all subjects, but observed relationships between
DF and percentage predicted FEV; and percentage pre-
dicted DLco/VA in the group of COPD patients alone
and in the combined group of bronchitic and healthy
subjects. The correlations between DF and lung function
in the COPD patients were in close agreement with
those obtained here. Moller et al. did not report on rela-
tionships between DF and lung function and no associa-
tions were demonstrated in the study by Anderson et al.

The strong correlations observed between lung func-
tion and the DF of particles in the range 20-30 nm sug-
gest that determination of the DF for particles of this
size may be a suitable tool for evaluation of respiratory
disease. It is argued above that not only breathing pat-
tern, but also airway morphology is a reason for the ab-
normal deposition. Numerous studies investigate the use
of deposition of aerosol particles as a tool to diagnose
lung disease [22-24]. However, these studies focus on
particles larger than 400 nm.

Deposited dose rate

The COPD patients were found to have an increased
deposited dose rate of DEPs generated during idling
along with a tendency towards a significantly increased
deposited dose rate for particles emitted during transient
driving (Figure 4). The increased deposited dose rate is
in agreement with the results of Brown et al [5]. The
reason for the increase in deposited dose rate is the
higher minute ventilation in COPD. The subjects with
the highest deposited dose rates received about 2.5 times
more particles than those with the lowest (Figure 5).

A higher deposited dose rate may be one possible ex-
planation for the increased vulnerability to air pollution
exposure found in many toxicological and epidemio-
logical studies in patients with COPD. The deposited
dose rate, unlike the size dependent DF, is influenced by
size distribution, which varies between different diesel
engines. At similar mass concentrations, the number of
particles in the air will be larger if the size distribution is
dominated by many small particles rather than a few
large ones. Therefore, the deposited dose rate of DEPs
may vary. When calculating the deposited dose rate for
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aggregated particles, such as DEPs, the particles effective
density must be considered (see online Additional file 1).

Conclusion

In summary, the COPD patients had an increased depos-
ited dose rate of DEPs, primarily because of heightened
minute ventilation (MV). Increased deposited dose rates
are believed to enhance the harmful effects of inhaled par-
ticles. A strong association was found between severity of
COPD and deposited dose rate of inhaled DEPs since low
DLco/VA and FEV/FVC resulted in a high respiratory
tract deposition. Strong associations were also found be-
tween the deposition fraction and lung function, in par-
ticular for 20-30 nm particles. The results suggest that
measurements of the respiratory tract deposition of 20—
30 nm particles may be valuable in the evaluation of re-
spiratory disease.

Since the deposition of DEPs for healthy subjects was
similar to the deposition of spherical hydrophobic particles
of similar mobility size (as is also expected from theory),
the presented results could be assumed to apply not only to
DEPs but also to other spherical or agglomerated hydro-
phobic nanoparticles in at least the range 10—300 nm.

Methods

Subjects

Two groups of volunteers were recruited: I) 8 healthy
non-smokers with normal lung function (3 men, 5
women, age 23-43 yrs, median 26 yrs), and II) 10
patients with COPD (7 men, 3 women, age 59-78 yrs,
median 65 yrs). The COPD patients were ex-smokers
with a smoking history of at least 10 pack years and dis-
ease severity ranging from stage 2-3, according to the
2008 GOLD guidelines [25]. The study was approved by
the local ethics committee and performed in accordance
with the Declaration of Helsinki. Informed written con-
sent was obtained from all subjects.

Aerosol generation
Subjects were exposed to diesel exhaust particles (DEPs)
generated by a standard truck engine (Volvo TD40 GJE,
4.0 L, four cylinders, 1996) with no exhaust after-
treatment. The engine was operated in a motor test
bench in order to simulate two typical engine loads: id-
ling and transient load consistent with the urban driving
part of the standardized European Transient Cycle
(ETC.) protocol. The concentrated DEPs from the en-
gine exhaust were diluted in a procedure optimized to
mimic ambient conditions and thereafter introduced
into a human exposure chamber (described in detail
elsewhere [7,8]). DEPs from idling and transient load
were studied separately.

The daily average mass concentration of DEPs in the
chamber was 59 +5 pg/m3 (as PM;) during idling and

Page 7 of 8

300 +2 pg/m® during transient load, as measured by a
tapered element oscillating microbalance (TEOM). Fur-
ther information regarding the physical and chemical
characterization of the DEPs is provided in the online
Additional file 1 and a previous publication [11].

Respiratory tract deposition

The subjects completed two exposure sessions, one for
each type of DEPs. The sessions were randomized on
different days and the aerosol type was unknown to the
subjects. Each session began with a 3-minute test period
for subjects to get accustomed to the equipment, fol-
lowed by an exposure of 2x15 minutes.

The respiratory tract deposition of the DEPs was
determined by a novel method (RESPI) [15]. In sum-
mary, subjects wearing a nose clip breathed sponta-
neously through a mouthpiece while sitting in a relaxed
position. The concentration of DEPs in the range 10—
500 nm was measured in separate containers for inhaled
and exhaled air with a scanning mobility particle sizer
(SMPS). Thereafter the deposition fraction (DF) was
determined by comparing the size-resolved number of
DEPs in the two containers. Corrections were made for
particle losses in the instrument and for mouthpiece
dead space [15,26]. The DEPs were dried to below 20%
relative humidity before measurement. Further informa-
tion is provided in the online Additional file 1 and in a
separate publication [11].

Calculations
The deposited dose per hour of exposure (the deposited
dose rate) was derived as the probability of the DEPs to
deposit (DF) multiplied by the inhaled amount of parti-
cles by mass or number during one hour. Calculation of
the surface area of the deposited particles involves un-
certain assumptions on particle structure and is dis-
cussed in the online Additional file 1. To facilitate
comparisons between the subjects, the concentration of
the inhaled DEPs was normalized to 1 pg/m® for the
deposited dose rate calculation. The size-dependent
mass concentration was determined by combining mea-
surements of particle size distribution (SMPS) and ef-
fective density (APM, Aerosol Particle Mass analyzer).
Differences between data means were evaluated with
the t-test using SPSS (SPSS Inc., IBM Corporation, ver-
sion 19). Dependence between variables was investigated
with Pearson’s correlation and multivariate linear model-
ing across all subjects. A p-value of less than 0.05 was
considered significant.

Additional file

[ Additional file 1: Diesel deposition for COPD. ]
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MV: Minute Ventilation; PEF: Peak Expiratory Flow; PM: Particulate Matter;
TLC: Total Lung Capacity; VC: Vital Capacity; Vy: Tidal Volume.
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