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Abstract

Background: Multi-walled carbon nanotubes (MWCNTs) are new manufactured nanomaterials with a wide
spectrum of commercial applications. To address the hypothesis that MWCNTs cause persistent pulmonary
pathology, C57BL/6J mice were exposed by pharyngeal aspiration to 10, 20, 40 or 80 μg of MWCNTs (mean
dimensions of 3.9 μm × 49 nm) or vehicle. Lungs were preserved at 1, 7, 28 and 56 days post- exposure to
determine the potential regions and target cells for impact by MWCNT lung burden. Morphometric measurement
of Sirius Red staining was used to assess the connective tissue response.

Results: At 56 days post-exposure, 68.7 ± 3.9, 7.5 ± 1.9 and 22.0 ± 5.1 percent (mean ± SE, N = 8) of the MWCNT
lung burden were in alveolar macrophages, alveolar tissue and granulomatous lesions, respectively. The subpleural
tissues contained 1.6% of the MWCNT lung burden. No MWCNTs were found in the airways at 7, 28 or 56 days
after aspiration The connective tissue in the alveolar interstitium demonstrated a progressive increase in thickness
over time in the 80 μg exposure group (0.12 ± 0.01, 0.12 ± 0.01, 0.16 ± 0.01 and 0.19 ± 0.01 μm for 1, 7, 28 and 56
days post-exposure (mean ± SE, N = 8)). Dose-response determined at 56 days post-exposure for the average
thickness of connective tissue in alveolar septa was 0.11 ± 0.01, 0.14 ± .02, 0.14 ± 0.01, 0.16 ± 0.01 and 0.19 ± 0.01
μm (mean ± SE, N = 8) for vehicle, 10, 20, 40 and 80 μg dose groups, respectively.

Conclusions: The distribution of lung burden was predominately within alveolar macrophages with approximately
8% delivery to the alveolar septa, and a smaller but potentially significant burden to the subpleural tissues. Despite
the relatively low fraction of the lung burden being delivered to the alveolar tissue, the average thickness of
connective tissue in the alveolar septa was increased over vehicle control by 45% in the 40 μg and 73% in the 80
μg exposure groups. The results demonstrate that MWCNTs have the potential to produce a progressive, fibrotic
response in the alveolar tissues of the lungs. However, the increases in connective tissue per μg dose of MWCNTs
to the interstitium are significantly less than those previously found for single-walled carbon nanotubes (SWCNTs).

Background
Carbon nanotubes (CNTs) are a key type of nanomater-
ial being developed and used in manufacturing pro-
cesses. Single and multi-walled carbon nanotubes
(SWCNTs, MWCNTs) are two of the main tubular
nanoscaled structures formed from carbon atoms. Both
SWCNTs and MWCNTs are relatively durable, have a
high strength-to-weight ratio, and a number of addi-
tional qualities making them desirable for a variety of
manufacturing and medical applications. In evaluating

the potential for pulmonary toxicity, the low reactivity
of the rolled nanotube form of the graphene sheets and
the corresponding low toxicity of the macroscopic gra-
phite form would suggest a low toxicity, at least for the
purified forms which do not contain the metal catalysts
used in synthesis of the nanotubes. Indeed, the high
mechanical stability, the ability to be functionalized and
the apparent biocompatibility of CNTs has lead to the
aggressive development of CNTs for tissue engineering
applications [1].
However, studies with purified SWCNTs have demon-

strated potentially significant health risks from pulmon-
ary exposure [2-6]. Doses in these studies were over a
wide range and included inhalation studies resulting in
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low lung burdens which are relevant to potential occu-
pational exposure [4]. Subsequent studies with highly
pure MWCNTs have demonstrated a inflammatory
time-course and fibrotic response which are qualitatively
similar to that of the SWCNT studies [6-12]. To date,
direct comparisons of the effects of SWCNTs versus
MWCNTs by the same route of administration and
methods have been limited to a few studies [3,4,12,13].
In general, the quantitative comparisons of these studies
have been focused on analysis of inflammatory media-
tors and/or cells in bronchoalveolar lavage. Recent cell
culture studies indicate that dispersed SWCNTs may
directly stimulate fibroblast proliferation and collagen
production [14], suggesting that migration of CNTs to
the alveolar interstitium may be a critical step in CNT-
induced fibrogenesis.
While both single and multi-walled forms of CNTs

have been demonstrated to have fibrotic potential, eva-
luations of the fate of CNT following lung exposure
have frequently been limited to reports of visual impres-
sions. These indicate that SWCNTs and MWCNTs dif-
fer significantly in how the material is distributed within
the lungs. Quantitative distribution determinations have
been made for SWCNTs [3-5]. These results demon-
strate that SWCNT distribution in the alveolar region is
comprised of two components the ratio of which
depends on the initial dispersion state. In studies where
pure, but relatively poorly dispersed material are used,
large clumps of SWCNTs from 5 to 20 microns are
initially found in the lungs [2,5]. These clumps
accounted for approximately 80% of the lung burden in
our prior studies and were found to rapidly induce the
development of large granulomatous lesions within the
first 7 days of exposure [5]. The remaining 20% of the
lung burden was found to be in single nanotubes, nano-
ropes or small, submicron structures that were found to
be rapidly incorporated into the alveolar interstitium.
Macrophage phagocytosis of the pure, SWCNT form
was not a significant component. A subsequent study
using a highly dispersed form of pure SWCNTs
reported that SWCNTs induced interstitial fibrosis but
did not contain large clumps of SWCNT and did not
produce granulomatous lesions [3]. These observations
would indicate that the fibrotic response of the lungs is
due to the dose of SWCNTs delivered to the alveolar
interstitium in the submicron form.
MWCNT lung burden is much more diversely distrib-

uted between cells and/or alveolar regions. In general
the MWCNT form of CNTs is more easily dispersed
before administration, and the number and size of gran-
ulomatous lesions that form from the agglomerates are
significantly fewer and smaller than those present in
SWCNT-exposed lungs [15]. In lungs exposed to
MWCNTs, the CNTs are found to be distributed in

every cell/cell layer of the lung parenchyma [12]. Indeed,
a substantial number of nanotubes are found, within
hours of exposure, distributed in the subpleural intersti-
tium and penetrating through the visceral pleura into
the pleural space [13]. Unlike SWCNTs, alveolar macro-
phages in MWCNT-exposed lungs are observed to be
highly loaded with nanotubes [6,7,12,13]. Although the
distribution of MWCNTs differs significantly from that
of SWCNTs, MWCNT-exposed lungs still demonstrated
interstitial fibrosis [12]. However, the qualitative nature
of the histopathologic evaluation of MWCNT-exposed
lungs to date precludes a direct quantitative comparison
of the fibrotic response between the two forms of
nanotubes.
In this study, we sought to determine the fraction of

the dose of MWCNTs delivered to the alveolar intersti-
tium and, thus, determine if the inherent potential of
MWCNTs to produce an interstitial fibrotic response
differs significantly from that of SWCNTs when expo-
sure was conducted via similar methods in the same
laboratory. To accomplish this, we determined the dis-
tribution of MWCNT lung burden to alveolar macro-
phages, the alveolar interstitium, and other
compartments at different doses and times and quanti-
fied the degree of alveolar fibrotic response.

Results
Tests for potential redistribution of MWCNT fibers dur-
ing sectioning did not demonstrate any tendency for
MWCNT fibers to be redistributed. MWCNT fibers in
the subpleural tissue region averaged 4.7 ± 0.6 and 5.1 ±
0.7 (mean ± SE, N = 16) fibers per half lobe profile in
the top and bottom counts, respectively. There was no
statistically significant difference in the number of
MWCNT fibers in the subpleural tissue in the top ver-
sus the bottom. This is consistent with a prior study
which specifically focused on MWCNTs in the pleura
[13], with high magnification imaging of MWCNTs in
the same sections as the present report. The FESEM
and light microscopy of that study, involved detailed
examination of hundreds of MWCNTs in the sub-
pleural/pleura region at high resolution but did not pro-
duce any evidence of redistributed fibers.
Field emission scanning electron microscope (FESEM)

examination of the lung surface demonstrated that
MWCNTs were being rapidly incorporated in the alveo-
lar epithelium (Figure 1A) and mucous lining layer (1B).
MWCNTs were observed in the mucous lining layer at
early time points of 1 hour and 1 day post-aspiration.
MWCNTs in the airways at these early time points were
rapidly cleared as demonstrated by their absence in the
airways at 7, 28 or 56 days after aspiration. At all time
points of the study, MWCNT-loaded alveolar macro-
phages, such as the one illustrated in Figure 1C, were
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the most prominently observed foci of CNTs. In exami-
nation of the fibers caught in section, such as Figure 1C,
intracellular MWCNTs did not appear to be associated
with intracellular vacuoles and many MWCNTs were
found penetrating the cell membrane and/or completely
passing through the cell. This suggests that either 1)
normal phagocytosis may not be the central mechanism
for loading of alveolar macrophages with MWCNTs or
2) phagocytized MWCNTs were not maintained within
the phagolysosome. MWCNTs could be found penetrat-
ing into the vascular space of the lungs, such as the
ones shown in the pulmonary venule of Figure 1D.
Although these cases of vascular penetration were rare,
they suggest some degree of transport of MWCNTs out
of the lungs via the circulation.
The enhanced dark field images of Figure 2 illustrate

the general alveolar distribution of MWCNTs (Figure
2A) and highlight the similarities and differences from
that of dispersed SWCNTs from a previously reported
study [3] (Figure 2B). Examination of sections from
MWCNT-exposed lungs demonstrates that this form of
CNTs readily penetrates all cell membranes/boundaries
of the lungs. While MWCNTs are found be highly con-
centrated in alveolar macrophages, they have also been
found to rapidly penetrate the alveolar epithelium and
visceral pleura [13]. In contrast, SWCNTs are seldom
found in alveolar macrophages, but appear to predomi-
nately migrate through the alveolar epithelium to the

interstitial space [3]. As illustrated in Figure 2, the
MWCNT and SWCNT structures, which distribute to
the interstitial space, are submicron in dimension and
are comparable in size between the two forms of CNTs.
The lung burden distribution of MWCNTs in alveolar

macrophages, the alveolar interstitium, granulomas in
the airspaces and subpleural tissue regions at 56 days
post-aspiration (80 μg dose) are shown in Figure 3. The
results demonstrate the prominent incorporation of
MWCNTs into alveolar macrophages. The majority of
the MWCNTs were found within and/or penetrating
into alveolar macrophages (68% of the total lung bur-
den). MWCNTs in the interstitium of the alveolar tissue
accounted for 8% of the total lung burden at this time.
Subpleural tissue, the region consisting of mesothelial
cells of the visceral pleura and immediately adjacent
interstitium, contained 1.6% of the total lung burden.
MWCNTs were rarely observed in the airways at 7, 28
or 56 days post-aspiration.
Granulomatous lesions in the alveolar airspace

accounted for 20% of the lung burden. A representative
FESEM image of the granulomatous lesions formed by
MWCNTs at 56 days after aspiration of a 40 μg dose is
shown in Figure 4A, and a light microscopic image of
another lesion (arrow) is shown in Figure 4B. These
granulomatous lesions were relatively rare compared to
those found in SWCNT- exposed lungs [2,5] but when
present were comparable to the size of an alveolus.

Figure 1 FESEM examination of lungs. A high magnification image
of MWCNTs on the alveolar epithelial surface is shown in Figure 1A.
Arrows indicate numerous points where the MWCNTs are being
enveloped by the Type I alveolar epithelium 1 hour after aspiration.
Figure 1B shows MWCNTs in the mucous blanket of an airway 1 hour
after aspiration. A MWCNT-loaded alveolar macrophage (Mac) is shown
passing through the alveolar wall in Figure 1C (28 days post-aspiration,
80 ug dose). MWCNTs penetrating through the endothelial wall into
the lumen of a pulmonary venule are indicated by the arrows of
Figure 1D (28 days post-aspiration, 80 ug dose).

Figure 2 Enhanced darkfield image of CNT-exposed lungs.
Figure 2A shows the general distribution of MWCNTs in the lungs 7
days after aspiration (40 ug dose) with the section oriented with the
pleural space running along the top. CNTs scatter light with high
efficiency and thus produce the bright, white structures in these
enhanced darkfield images, while nuclei (red) and other tissues
(green) produce a significantly duller image. Arrow points to an
individual MWCNT penetrating into the mesothelial cell layer
forming the boundary between the alveolar tissues and pleural
space. While alveolar macrophages are foci for MWCNTs, scattered,
submicron MWCNT structures can be found in the alveolar
interstitium throughout the section. Figure 2B gives a comparison
image from a mouse lung exposed to a highly dispersed
preparation of SWCNTs (aspiration 10 ug dose, 7 day). In the case of
dispersed SWCNTs, the majority of CNT structures are rapidly
incorporated into the alveolar interstitium (arrows).

Mercer et al. Particle and Fibre Toxicology 2011, 8:21
http://www.particleandfibretoxicology.com/content/8/1/21

Page 3 of 11



Generally, the granulomas were located in or near the
alveolar region immediately proximal to the terminal
bronchiole as shown in Figure 4B.
A representative light micrograph of the interstitial

fibrotic response to MWCNTs 56 days after aspiration
of an 80 ug dose is shown in Figure 5B with a compar-
ison of a PBS aspiration treated lung section in Figure
5A. Single fibers and isolated small clumps of well-dis-
persed MWCNTs can be found throughout the abnor-
mally thickened alveolar wall in the center of the
micrograph (Figure 5B). MWCNTs were not present in
the much thinner and more normal appearing alveolar
walls in the upper left of the micrograph. As described
in the Methods section, mean linear intercept for the
alveolar airspace was determined. This measure of the
average free distance of the alveolar airspaces was 26.1

Figure 3 Morphometric determination of the lung distribution
of MWCNTs 56 days post- aspiration. Results show the
distribution of MWCNT burden in airways, alveolar and subpleural
tissue regions of the lungs 56 days after aspiration of an 80 ug
dose. Results are expressed as a percentage of the total lung
burden. As shown in the graph, MWCNTs within, partially within or
completely penetrating alveolar macrophages account for the
majority of the MWCNT lung burden. Data are means ± SE for an N
of 8 animals per group.

Figure 4 FESEM and light micrographs of fibrotic granulomas
following MWCNT aspiration. The FESEM image of Figure 4A
shows a granulomatous lesion which is essentially filling an alveolus
of the lung (40 ug dose, 56 days). Arrows indicate MWCNTs in the
section of the granuloma. The light micrograph in Figure 4B
illustrates the extensive collagen network (red) developed to
encircle a small mass of MWCNTs in the airspace (black, 20 μg dose,
56 days). Collagen fibers are red in the section due to staining with
Sirius Red. TB-terminal bronchiole.

Figure 5 Light micrograph of fibrotic response to interstitial
MWCNTs. Comparision of Sirius red staind collagen fibers in PBS
treated (5A) and MWCNT treated lungs (5B, 80 ug dose at 56 days
post-aspiration). Figure 5A illustrates the typical long and thin
collagen fibers which traverse within the alveolar interstitium of a
normal lung. MWCNTs incorporated into the alveolar interstitium
were found to be associated with significant interstitial
development of collagen fibers and accompanying interstitial cells.
The region of the alveolar wall containing the MWCNTs (arrows) is
substantially thicker than the average alveolar wall thickness of 4 to
5 um which is typical of a normal mouse. Sirius Red-Hematoxylin
stained sections.
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± 0.3, 27.8 ± 0.9, 26.9 ± 0.3, 27.5 ± 0.3 and 27.3 ± 0.5
um (mean ± SE, N = 8) for the PBS control and 10,
20, 40 and 80 ug dose groups, respectively. There were
no statistically significant differences in the mean lin-
ear intercept between groups indicating that the focal
thickening of the alveolar wall illustrated in Figure 5
was not sufficiently global to alter alveolar airspace
dimensions.
The corresponding graph of the morphometrically

determined changes in alveolar collagen fibers, identified
by Sirius Red staining, expressed as the average thickness
of connective tissue fibers at various times following
aspiration of the 80 ug dose is given in Figure 6. This
graph demonstrates a progressive increase in thickness of
connective tissue in the alveolar interstitium over time,
which was statistically significant by day 28 post-exposure.
On average, connective tissue thickness in the alveolar
region increased by 1.2% per day at the 80 ug dose. As
indicated in the methods, collagen accumulation in the
lungs due to granulomatous lesions was determined sepa-
rately. Connective tissue fibers in the granulomatous
lesions of the airspaces expressed as a percentage of the
total connective tissue fibers in the alveolar regions of the
lungs was 0.5 ± 0.2, 2.8 ± 0.8 and 7.0 ± 1.2% (mean ± SE,
N = 8) at days 7, 28 and 56 post-exposure, respectively.
Results from the analysis of the dose-response

between aspirated dose of MWCNTs and the thickness

of alveolar connective tissue 56 days after exposure are
given in Figure 7. The progressive increase in the aver-
age thickness of alveolar connective tissue versus aspira-
tion dose of MWCNTs was approximately linear with
an r2 of 0.95. The slope was equal to an increase of
alveolar connective tissue thickness by approximately 1%
for each microgram of MWCNT dose above control. At
a dose of 80 ug the average thickness of connective tis-
sue fibers stained by Sirius Red was increased by 73%
over control.

Discussion
Pulmonary responses to MWCNT exposure include an
acute inflammatory phase, a progressive fibrotic
response in the interstitium of the alveolar wall, and a
granulomatous inflammation enveloping any airspace
deposits of MWCNT agglomerates [6,10,12,16]. The
acute inflammatory reaction peaks at 7 days in the
mouse and resolves, albeit at a slow pace as judged by
lavage analysis, over a 56 day period [12]. MWCNTs
accumulating at the bronchoalveolar junction can cause
a granulomatous response to airspace deposits of
MWCNTs resulting in infiltration and encasement by
epithelioid macrophages to form a connective tissue rich
nodule that “walls-off” the MWCNTs in the airspace
and is a typical foreign body response of the lungs to
insoluble and/or poorly cleared particles [17-19]. In
addition to these components, which have demonstrated
toxic responses for MWCNTs, the pleural region and
the lymphatics may be a site of toxic responses to
MWCNTs as reports have shown the presence of

Figure 6 Morphometric determination of the time-course of
collagen response day 1 to day 56 post-exposure to an 80 ug
MWCNT dose. Results from morphometric determination of Sirius
Red stained alveolar interstitial collagen fibers expressed as the
average thickness of connective tissue in the alveolar interstitium at
various times after aspiration of MWCNTs. At 28 days, there was
significant accumulation of connective tissue fibers in the alveolar
wall which continued to increase through 56 days after aspiration.
Day 1 and day 7 post-exposure were not significantly different from
PBS-treated controls. Data are means ± SE for an N of 8 animals per
group. * indicates statistical significance P < 0.05 vs. DM -treated
control mice.

Figure 7 Collagen dose-response at 56 days after exposure to
MWCNTs. As shown in Figure 7, there was a progressive increase in
the average thickness of the alveolar connective tissue thickness
versus aspiration dose of MWCNTs. At a dose of 80 ug the average
thickness was increase by 73% over control. Data are means ± SE
for an N of 8 animals per group. * indicates statistical significance P
< 0.05 vs. DM -treated control mice.
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MWCNTs in the subpleural tissue after inhalation and
aspiration exposures [8,12,13,20].
Understanding of the mechanisms responsible for and

importance of these varied responses to MWCNTs is
complicated by the widespread distribution of
MWCNTs throughout the lung parenchyma. The wide-
spread distribution of MWCNTs in virtually every major
cell and region of the lung parenchyma makes determi-
nation of the distribution of MWCNTs in the lungs
necessary in order to evaluate sensitivities of the differ-
ent regions to MWCNT exposure. In the present study,
we sought to determine the distribution of MWCNT
burden in the lungs and examine how the dose to the
alveolar interstitium altered the fibrogenic response.
Such analysis allowed the sensitivity to the interstitial
dose for MWCNTs to be compared to SWCNTs, thus
determining relative fibrogenic potency.
Although composed of the same carbon-carbon bond

arrangement, the diameter and rigidity of MWCNTs
and SWCNTs differ significantly. Individual SWCNTs
are 1 to 4 nm in diameter and typically several hundred
nanometers in length [5]. Individual MWCNTs used in
this study are more fiber-like with mean length of 3.9
um and 49 nm diameter [12]. At this fundamental level,
SWCNTs are comparable to the thread-like filaments
observed in basement membranes of the lungs [21,22].
MWCNTs are more similar in dimensions to the col-
lagen fibrils forming the collagen fibers of alveolar inter-
stitium [23]. For SWCNTs, the actual structures
observed in exposed lungs do not correspond to a single
CNT fundamental unit. As we have shown previously
with TEM and confocal examinations [3], SWCNTs are
rapidly incorporated into the interstitial space with few
being incorporated in alveolar macrophages. SWCNTs
are rarely found as individual nanotubes. The more typi-
cal interstitial form of SWCNT incorporation is as sub-
micron groupings of nanotubes similar to those shown
in Figure 2B. The mode of lung exposure does not seem

to be a factor as no difference in the distribution of
SWCNTs was found comparing aspiration versus short
term (4 day) inhalation exposure to well dispersed
SWCNTs [4].
As shown in the present study, MWCNT incorpora-

tion into the alveolar interstitial spaces is also a rapid
process with individual nanotubes or small clumps or
nanotangles of several poorly organized nanotubes being
most commonly observed. This pattern was observed in
lungs preserved within 1 hour of aspiration (Figure 1) as
well as many days after exposure (Figures 1, 2 and 5).
This indicates that there is no significant redistribution
once the nanotubes are incorporated into the alveolar
interstitium. Of note, the fraction of the MWCNT lung
burden incorporated into the alveolar interstitium of
approximately 8% is significantly lower than that of
well-dispersed SWCNTs where upwards of 90% of the
lung burden is deposited in the alveolar septa (Table 1).
This difference in alveolar interstitial lung burden
between MWCNTs and SWCNTs is mainly due to the
large portion of lung burden carried by alveolar macro-
phages in the case of MWCNTs.
A comparison of the fibrotic response between

SWCNTs and MWCNTs would appear to suggest that
SWCNTs are significantly more fibrogenic than
MWCNTs. For instance, Table 1 gives the connective
tissue thickness increase from 0.1 um in PBS controls to
1.1 um in mice with an aspiration dose of 10 ug of well-
dispersed SWCNTs at 28 days post-exposure [3]. In
contrast, in the present study of MWCNTs, Table 1
shows that the average thickness of connective tissue
increased from 0.1 um in PBS controls to 0.2 um at the
80 ug aspiration dose. Clearly, when compared on the
basis of mass delivered to the lungs, the alveolar intersti-
tial fibrotic response to MWCNTs is significantly lower
than that of SWCNTs. In part these differences in
response are accounted for by differences in the alveolar
interstitial dose for these two types of CNTs (Table 1).

Table 1 Sensitivity of Interstitial Fibrotic Response to SWCNTs versus MWCNTs

SWCNTs1 MWCNTs

Aspiration Dose
(ug)

10 ug 80 ug

Lung Burden Distribution
(%)

10% Alveolar Macrophage
90% Interstitial

70% Alveolar Macrophage
8% Interstitial

20% Airspace Granuloma
2% Subpleural Tissue

Alveolar Interstitial Dose
(ug)

9 ug 6.4 ug

Connective Tissue Thickness (um) 0.10 to 1.10
Control Exposed

0.11 to 0.19
Control Exposed

Sensitivity
Δum Thickness/Δug Dose

0.11 um/ug 0.013 um/ug

1 Data for dispersed SWCNT interstitial response from Mercer et al. [3]
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For SWCNTs, 90% of the lung burden is distributed to
the interstitium whereas only 8% of the MWCNTs lung
burden is distributed to the interstitium, thus the lower
alveolar interstitial dose of the MWCNTs. The lower
MWCNT dose to the alveolar interstitium results in a
lower response. A lower fibrogenic activity of MWCNTs
than SWCNTs has been reported with in vitro studies
measuring proliferation and collagen production of lung
fibroblasts [14,24,25].
When the target site doses are used to assess the sen-

sitivity of the alveolar interstitium to CNT exposure, it
is found that SWCNTs induce a change in connective
tissue thickness of 0.11 um/ug of interstitial dose while
the corresponding value for MWCNTs is 0.013 um/ug.
After accounting for the dose delivered to the critical
target site of the alveolar interstitium, SWCNTs are
found to be approximately 8.5-fold more fibrogenic than
MWCNTs. A recent NIOSH Current Intelligence Bulle-
tin [26] suggests that MWCNTs and SWCNTs may dif-
fer by 7.5-fold in adverse health effects based on
analysis of exposure levels to carbon nanotubes asso-
ciated with a 10% increase in abnormal response (BMD-
benchmark dose). In the NIOSH analysis, BMDs of 3.6
and 0.48 ug/lung were reported for MWCNTs and
SWCNTs exposures of rodent lungs, respectively, using
data from the Porter et al. [12] and the Shvedova et al.
[4] studies.
Comparison of response between MWCNTs and

SWCNTs, on the basis of mass as the denominator may
not be the most relevant basis as the fibrotic reaction is
likely due to either a toxic species formed by a chemical
reaction on the surface of the CNT or interaction of the
CNTs with cell surfaces and/or interior organelles. The
dose, expressed in terms of surface area of CNT struc-
tures, is thus an alternative means of comparing the CNT
response that should be considered. Surface area mea-
surement by nitrogen gas adsorption/desorption is the
most commonly reported characterization of nanoparti-
cle surface. As indicated in the Methods section, the BET
based surface of MWCNTs was 26 m2/g. Shvedova et al.
[4] reported a surface area of 508 m2/g for SWCNTs.
The BET measure of surface area would indicate a 20-
fold greater surface area per microgram of SWCNTs
than MWCNTs in the lungs assuming that the two
CNTs were dispersed to the same degree. Using this
result as a basis to evaluate the relative response of con-
nective tissue change to dose, expressed as surface area,
would indicate that MWCNTs are approximately 2.5
times more potent than SWCNTs. Uncertainty in what
the actual responsive surfaces areas are, i.e. the surface
area of the delivered structure, for either MWCNTs or
SWCNTs in the interstitium of the lungs prevents
accepting this factor of 2.5 fold as being accurate. How-
ever, it does indicate that differences in responsive

surface areas between MWCNTs and SWCNTs may
account for the differences in connective tissue response.
A direct stimulation of fibrogenesis by SWCNTs and
MWCNTs is supported by in vitro studies which indicate
that CNT fibers directly induce proliferation and collagen
production by lung fibroblast [14,25].
In spite of the quantitative differences in alveolar

fibrotic response to SWCNT and MWCNT the general
pulmonary response is qualitatively similar, resulting in
transient inflammation but persistent granulomatous
lesions and fibrosis. In mice exposed to CNT by pharyn-
geal aspiration (10 μg/mouse), SWCNT caused a greater
inflammatory response than MWCNT at 1 day post
exposure [3,5,12]. Morphometric analyses indicate that
well- dispersed SWCNT are not well recognized by
alveolar macrophages (only 10% of the alveolar burden
being within alveolar macrophages), while 90% of dis-
persed SWCNT structures rapidly cross alveolar epithe-
lial cells and enter the interstitium [3]. In contrast, as
shown in this study, 68.7% of MWCNT in the respira-
tory zone enter alveolar macrophages and 7.5% migrate
into the alveolar interstitium. This difference in pulmon-
ary fate of SWCNT versus MWCNT is likely to partially
account for the quantitative differences in alveolar fibro-
tic response. The reason for this difference in macro-
phage uptake is unknown. Lastly, SWCNT exhibit a
greater fiber count per mass than MWCNT. Therefore,
on an equal mass lung burden basis more SWCNT
interact with the lung than with MWCNT. Since fibrotic
potency in the present study usead a mass dose metric,
this may explain part of the potency difference. At pre-
sent, there is no satisfactory method to determine the
number of fibers per mass for SWCNT versus
MWCNT.

Conclusions
In this study, we determined the distribution of
MWCNTs following lung exposure as well as the dose
and time relationships to connective tissue response of
the alveolar interstitium. The majority of the MWCNT
lung burden was initially and chronically in alveolar
macrophages. The alveolar interstitium received
approximately 8% of the MWCNT lung burden. In addi-
tion, FESEM and enhanced dark field microscopy clearly
demonstrate that the CNT clumps delivered to the
interstitial space were comparable in size for both
SWCNTs and MWCNTs. Airways contained MWCNTs
at 1 hour and 1 day after exposure but were cleared of
MWCNTs at 7 days and later times.
MWCNTs were found to produce a time and dose

dependent increase in collagen content of the alveolar
interstitium. After accounting for the fraction of lung
burden delivered to the interstitium, interstitial collagen
response to MWCNT exposure was found to be
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significantly less than that of SWCNT on a mass deliv-
ered basis. When compared on the basis of CNT surface
area delivered to the interstitium the relative responses
are more nearly equal. The results demonstrate that
there are differences in the fibrotic response between
the two forms of carbon nanotubes that cannot be
explained by the mass of CNT distributed to the inter-
stitial space. This suggests that surface active reactions
may be involved in the interstitial response(s) to
SWCNT and MWCNT. This mechanism is supported
by in vitro studies indicating that CNT can directly sti-
mulate proliferation and collagen productions by lung
fibroblasts [14,24,25].

Methods
Animal
Male C57BL/6J mice (7 weeks old) were obtained from
Jackson Laboratories (Bar Harbor, ME). Mice were
housed one per cage in polycarbonate ventilated cages,
which were provided HEPA-filtered air, with fluorescent
lighting from 0700 to 1900 hours. Autoclaved Alpha-Dri
virgin cellulose chips and hardwood Beta-chips were
used as bedding. Mice were monitored to be free of
endogenous viral pathogens, parasites, mycoplasms,
Helicobacter and CAR Bacillus. Mice were maintained
on Harlan Teklad Rodent Diet 7913 (Indianapolis, IN),
and tap water was provided ad libitum. Animals were
allowed to acclimate for at least 5 days before use. All
animals used in this study were housed in an AAALAC-
accredited; specific pathogen-free, environmentally con-
trolled facility. All animal procedures were approved by
the NIOSH ACUC.

Carbon Nanotube Source
MWCNTs used in this study were obtained from Mitsui
& Company (XNRI MWNT-7, lot #05072001K28) and
were fully characterized in a previous report [12].
Briefly, MWCNT trace metal contamination was 0.78%,
with sodium (0.41%) and iron (0.32%) being the major
metal contaminants. Average MWCNT surface area
measured by nitrogen absorption-desorption technique
(Brunauer-Emmett-Teller method, BET) was 26 m2/g.
MWCNT median length was 3.86 μm and count mean
diameter was 49 ± 13.4 (mean ± S.D.) nm, as deter-
mined by scanning electron microscopy of MWCNTs
suspended in dispersion medium as described
below [12].

Pharyngeal Aspiration of MWCNTs
Suspensions of MWCNTs for aspiration were prepared
in a dispersion medium (DM) as reported previously
[15]. Dispersion medium was made up of Ca+2 and Mg
+2 phosphate-buffered saline (PBS), pH 7.4, supplemen-
ted with 5.5 mM D-glucose, 0.6 mg/ml mouse serum

albumin and 0.01 mg/ml 1,2 dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC). DPPC was prepared fresh as a
10 mg/ml stock solution in absolute ethanol. DM has
been shown to be an effective dispersing agent for
MWCNTs and does not elicit toxicity or mask surface
reactivity [15,27].
Mice were exposed to MWCNTs by pharyngeal

aspiration as described previously [12]. Briefly, mice
were anesthetized with isoflurane (Abbott Laboratories,
North Chicago, IL) for pharyngeal aspiration of DM
(vehicle control) or 10, 20, 40 or 80 μg of MWCNTs. In
a previously reported study [12] the 10 ug dose in mice
was shown to approximate human deposition for a per-
son performing light work for between 9 months and
7.5 years based on average daily MWCNT workplace
exposure data.
When fully anesthetized, the mouse was positioned

with its back against a slant board and suspended by the
incisor teeth using a rubber band. The mouth was
opened, and the tongue gently pulled aside from the
oral cavity. A 50 μl aliquot of sample was pipetted on
the base of the tongue, and the tongue was restrained
until the droplet was aspirated by at least 2 deep breaths
(but for not longer than 15 seconds). Following release
of the tongue, the mouse was gently lifted off the board,
placed on its left side, and monitored for recovery from
anesthesia. This alternative to inhalation has been
shown to produce a even distribution of fluorescent par-
ticles throughout the lung [28]. Recently published
direct comparisons studies between inhalation and
aspiration of SWCNTs have further demonstrated the
applicability of the aspiration technique for such studies
[4].

Body Weights
Body weights were 21.1 ± .2, 22.5 ± .8, 23.5 ± .5 and
26.5 ± .8 grams for 1, 7, 28 and 56 day groups given an
aspiration dose of 80 ug MWCNT (mean ± SE, N = 8).
Body weights for day 1 and day 56 DM aspiration
groups were 21.9 ± .7 and 26.9 ± .7 grams (mean ± SE,
N = 8). There were no significant differences in initial
body weight or weight gain between MWCNT exposed
and DM aspiration groups.

Lung Fixation and Section Preparation
At 1, 7, 28 and 56 days after aspiration, mice were
euthanized by an overdose of pentobarbital (> 100 mg/
kg body weight, i.p.) followed by transection of the
abdominal aorta to provide exsanguination. Seven to 8
animals were studied at each time point. The lungs were
fixed by intratracheal perfusion with 1 ml of 10% neutral
buffered formalin. To accomplish lung fixation, the tra-
chea was cannulated and the lungs removed from the
chest cavity. The lungs were then inflated with 1 ml of
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10% neutral buffered formalin over a 1 minute period
and the trachea tied off. After 4 to 5 hours the lungs
were trimmed and processed overnight in a tissue pro-
cessor. For each animal, the left lung lobe were placed
in the embedding carrier with a consistent apex to base
orientation and embedded in paraffin.
For morphometric studies, paraffin sections of the left

lung (5 μm thick) were cut. A new region of the dispo-
sable knife blade was used to section each block and the
water bath was changed frequently in order to prevent
potential cross-contamination that might result from
MWCNT passage on the knife between sections. The
sections were then deparaffinized and rehydrated with
xylene-alcohol series to distilled water. To enhance the
contrast between tissue and MWCNTs, lung sections
were stained with Sirius Red [29]. Sirius Red staining
consisted of immersion of the slides in 0.1% Picrosirius
solution (100 mg of Sirius Red F3BA in 100 ml of satu-
rated aqueous picric acid, pH 2) for 1 - 2 hours followed
by washing for 1 minute in 0.01 N HCl. Sections were
then briefly counterstained in freshly filtered Mayer’s
hematoxylin for 2 minutes, dehydrated, and mounted on
a slide with a coverslip. Additional sections were stained
with hematoxylin and eosin for routine pathology
assessment as previously reported [12].
Due to the fiber-like nature of MWCNT, the potential

for fibers to be redistributed over the section by the cut-
ting blade was a concern. To test for this possibility a
count was made of MWCNT fibers in the subpleural
tissue region in the top half of a section versus
MWCNT fibers in the subpleural tissue region in the
bottom half of the sections. The distinction of top ver-
sus bottom being made based on the direction of the
sectioning blade through the block. This comparison
was made on 16 lung profiles from 1 day post MWCNT
exposed mice at the 80 ug dose. Half of the blocks had
the apical portion of the lungs at the bottom of the
block when sectioned and the other half were reversed
to eliminate possible bias due to apical/basal gradients
of lung burden. Analysis of this tissue provided no evi-
dence of fiber redistribution dut to blade sectioning.

Field Emission Scanning Electron Microscopy
For scanning electron microscopy, sections of the lung
were cut at 8 microns, placed on carbon planchets,
deparaffinized and sputter coated. After coating, the
specimens were examined with a Hitachi Model S-
4800 Field Emission Scanning Electron Microscope
(FESEM) at 5 to 10 kV and working distances of 4.5
mm to 6 mm for magnifications of 100,000× to 1000×,
respectively. Photographs were taken in slow scanning
mode at 1280 × 1024 pixels. Use of thin sections from
paraffin embedded tissue was found to be preferable to
large, unevenly cut blocks because it provided a

uniform thickness of organic material on the carbon
planchet. The 8 micron sections were thick enough to
convey three-dimensional information but were also
less likely to charge or undergo physical shifts when
examined at the high magnifications necessary to study
nanomaterials.

Enhanced-Darkfield Light Microscopy Imaging of
Nanoparticles
Carbon nanotubes in sections from exposed lungs were
assessed using an enhanced-darkfield optical system.
Nanomaterials, such as carbon nanotubes, have dimen-
sions less than the wavelength of light, have closely
packed atoms, and typically have a refractive index sig-
nificantly different from that of biologic tissues and/or
mounting medium. These characteristics produce signif-
icantly greater scattering of light by nanoparticles than
by the surrounding tissues. The enhanced-darkfield opti-
cal system images light scattered in the section and,
thus, nanomaterials in the section stand-out from the
surrounding tissues with high contrast. Using this
method of imaging, lung sections can be easily scanned
at relatively low magnification to identify CNTs that
would not be detected by other means.
The optical system consisted of high signal-to-noise,

darkfield-based illumination optics adapted to an Olym-
pus BX-41 microscope (CytoViva, Auburn, AL 36830).
Sections for dark-field examination were specifically cut
from paraffin blocks and collected on ultrasonically
cleaned, laser cut slides (Schott North America Inc,
Elmsford, N.Y. 10523) to avoid nanoparticle contamina-
tion from the ground edges of traditional slides. After
staining with Sirius Red-Hematoxylin, sections were
coverslipped with Permount. After alignment of the sub-
stage oil immersion optics with a 10× objective, sections
were examined with 60× air or 100× oil immersion
objectives. Enhanced darkfield images were taken with a
2048 × 2048 pixel digital camera (Dage-MTI Excel digi-
tal camera XLMCT, Michigan City, In 46360).

Lung Distribution of MWCNTs
The distribution of MWCNTs in the lungs was deter-
mined by counting the occurrence of MWCNTs under
an eyepiece point counting overlay using standard mor-
phometric point counting methods [30] as previously
described for study of the distribution of SWCNTs [3].
Point counting categories were subdivided into points
over MWCNTs in airway region, points over MWCNTs
in alveolar regions, and points over MWCNTs in the
subpleural tissue region. Airway regions were defined as
those containing airway tissue (airway epithelial cells-
basement membrane and tissues of the broncho-vascular
cuff), airway lumen, and associated blood vessels greater
than 25 microns. Alveolar regions were those containing

Mercer et al. Particle and Fibre Toxicology 2011, 8:21
http://www.particleandfibretoxicology.com/content/8/1/21

Page 9 of 11



alveolar tissue and alveolar air space. The subpleura tis-
sue region included MWCNTs in the subpleural tissue
and MWCNTs in the visceral pleural surface. The sub-
pleural tissue regions included the immediately sub-
pleural alveolar interstitial-epithelium layer and
subpleural lymphatics but did not include any portion of
alveolar walls attaching to the pleura. Points in airway
and alveolar regions were further subdivided into points
over MWCNTs that were in the airspace, points over
MWCNTs that were in tissue of the region, and points
over MWCNTs that were partially or completely within
macrophages.
To accomplish the counting, an eyepiece counting

overlay consisting of 11 by 11 lines (121 total points for
each throw of the overlay) was used with a 100× oil
immersion objective. A grid pattern for throws of the
counting overlay was used in order to insure a uniform
sampling of the section which did not overweight inter-
ior points. The counting overlay throws of the eyepiece
were positioned over the section at 12 uniformly spaced
grid points in both × and Y co-ordinates. These 12 grid
points were determined using the stage micrometer
scale to measure the × and Y bounds of the section.
Using the bounding rectangle of these co-ordinates, a 3
by 4 grid was selected and the 12 intersections were
used as the center point for each of the eyepiece count-
ing overlay throws.
For each animal, three sections were counted and the

counts for the airways, alveolar and subpleural tissue
regions were summed. Each counting category was
divided by this total and multiplied by 100 to express
the results as a percentage of total lung burden. Eight
animals were analyzed per group.

Morphometric Analysis of Collagen Distribution
Collagen fibers in the lungs were detected with Sirius
Red staining [29], which has been demonstrated to be
a quantitative morphometric method for collagen fiber
determination in the lungs [31,32]. Quantitative mor-
phometric methods were used to measure the average
thickness of Sirius Red positive connective tissue fibers
in the alveolar regions. Volume and surface density
were measured using standard morphometric analyses
[33,34]. This consisted of basic point and intercept
counting. Volume density was determined from count-
ing the number of points over all tissues in the alveo-
lar regions and points over Sirius Red positive
connective tissue. Surface density of the alveolar wall
was determined from intercepts between a line overlay
and the alveolar wall. These point and intercept counts
were made using a 121-point/11-line overlay graticule
(12.5 mm square with 100 divisions), at 100× magnifi-
cation, taken at six locations equally spaced across
each section (one section per animal). This process

was repeated twice for each animal. In order to limit
the measurements to alveolar parenchyma, areas con-
taining airways or blood vessels greater than 25 mm in
diameter were excluded from the analysis. Average
thickness of the Sirius Red positive connective tissues
fibers of the alveolar wall was computed from two
times the ratio of volume density of point to the sur-
face density of the alveolar wall. The collagen fiber
content of granulomatous lesions in the airspaces was
assessed by a separate tabulation of points over Sirius
Red positive connective tissues in granulomas and
expressed as a percentage of total alveolar collagen.
Mean linear intercept, a measure of the average size of
the alveolar/alveolar duct airspaces in the alveolar
region, was computed from the ratio of volume density
to surface density [33].

Statistical Analyses
Data were analyzed using analysis of variance (STAT-
GRAF). Bartlett’s test was used to test for homogeneity
of variances between groups. Statistical differences were
determined using one-way analysis of variance with sig-
nificance set at p ≤ 0.05. When significant F values were
obtained, individual means were compared to DM-trea-
ted controls using Duncan’s multiple range test [35] and
P < 0.05 was considered to be significant. Data are given
as means ± SE.
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