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Abstract

Background: Carbon nanotubes (CNT) hold great promise to create new and better products for commercial and
biomedical applications, but their long-term adverse health effects are a major concern. The objective of this study was
to address human lung cancer risks associated with chronic pulmonary exposure to single-walled (SW) CNT through
the fundamental understanding of cellular and molecular processes leading to carcinogenesis. We hypothesized that
the acquisition of cancer stem cells (CSC), a subpopulation that drive tumor initiation and progression, may contribute
to CNT carcinogenesis.

Methods: Non-tumorigenic human lung epithelial cells were chronically exposed to well-dispersed SWCNT for a period
of 6 months at the physiologically relevant concentration of 0.02 pg/cm? surface area dose. Chronic SWCNT-exposed
cells were evaluated for the presence of CSC-like cells under CSC-selective conditions of tumor spheres and side
population (SP). CSC-like cells were isolated using fluorescence-activated cell sorting and were assessed for
aggressive behaviors, including acquired apoptosis resistance and increased cell migration and invasion in vitro,
and tumor-initiating capability in vivo. Non-small cell lung cancer cells served as a positive control.

Results: We demonstrated for the first time the existence of CSC-like cells in all clones of chronic SWCNT-exposed lung
epithelial cells. These CSC-like cells, in contrary to their non-CSC counterpart, possessed all biological features of lung
CSC that are central to irreversible malignant transformation, self-renewal, aggressive cancer behaviors, and in vivo
tumorigenesis. These cells also displayed aberrant stem cell markers, notably Nanog, SOX-2, SOX-17 and E-cadherin.
Restored expression of tumor suppressor p53 abrogated CSC properties of CSC-like cells. Furthermore, we identified
specific stem cell surface markers CD24'°" and CD133"9" that are associated with SWCNT-induced CSC formation and
tumorigenesis.

Conclusions: Our findings provide new and compelling evidence for the acquisition of CSC-like cells induced by
chronic SWCNT exposure, which are likely to be a major driving force for SWCNT tumorigenesis. Thus, our study supports
prudent adoption of prevention strategies and implementation of exposure control for SWCNT. We also suggest
that the detection of CSC and associated surface markers may provide an effective screening tool for prediction of
the carcinogenic potential of SWCNT and related nanoparticles.
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Background

Carbon nanotubes (CNT) are a major class of engineered
nanomaterials that are being produced on a massive scale
for a wide range of industrial and biomedical applications.
Their rapid growth in utility is attributed to their unique
properties such as light weight, high tensile strength, con-
ductivity and flexibility [1,2]. The global market for CNT
is estimated to reach trillion dollars in the next decade [3],
and so will the increase in human exposure during manu-
facturing, consuming, and disposal. Despite this growing
trend, their adverse health effects, especially long-term
health effects, are relatively unknown. CNT share several
properties (e.g. high aspect ratio, durability, and bio-
persistence) and route of exposure (e.g. respiratory)
with asbestos fibers [4-6], which are known human lung
carcinogens. Thus, CNT exposure may cause heath
consequences similar to asbestos exposure, which in-
clude lung cancer and mesothelioma.

The lungs are the major target organ for airborne CNT
exposure. CNT have been shown to migrate into the
alveolar interstitial compartment where the clearance rate
is low [7-9]. Recent animal studies have shown that in-
haled CNT that penetrate lung tissue could persist in
the lungs 6 months post-exposure [10]. Such biopersis-
tence and chronic interaction with lung epithelial cells
could potentially lead to carcinogenesis [10,11] since bio-
persistence is a critical factor in the paradigm of hazard-
ous fibers and is a basis for the classification of their
carcinogenic potential [12,13]. The acute effects of high-
dose CNT have been widely studied. In vitro, CNT can
induce apoptosis, DNA breakage, multipolar mitosis, and
activation of key molecular events involved in carcino-
genesis, e.g. MAPK, AP-1, NF-«xB, and Akt [14-18]. In
animals, a single intraperitoneal injection of multi-
walled (MW) CNT in heterozygous p53 mice caused
asbestos-like mesothelioma [19,20], while their short-
term intraperitoneal instillation in C57BL/6 mice in-
duced granuloma formation [21]. Short-term inhalation
of single-walled (SW) CNT was shown to trigger muta-
tions of K-ras gene locus in the lung of C57BL/6 mice,
which is a common event observed in lung tumors [22].

Unlike their acute effects, the chronic effects of CNT
have not been well addressed due to technical difficul-
ties and limited experimental models. Carcinogenesis is
a multi-step process requiring long-term exposure to
the carcinogens. Typical developmental period for fiber-
induced lung cancer in humans is 30-40 years [23]. To
mimic this long-term carcinogenic process, we have
recently developed a chronic exposure model in which
human lung bronchial and small airway epithelial cells,
a major cellular target of human lung carcinogenesis,
were continuously exposed to low-dose, physiologically
relevant concentrations of SWCNT for a prolonged
period of 6 months. Such chronic exposure resulted in
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irreversible malignant transformation and aggressive be-
haviors of the cells, activation of cancer-related canonical
pathways, and induction of tumorigenesis in a mouse
model [24,25]. A similar induction of aggressive/invasive
phenotype was observed in mesothelial cells chronically
exposed to SWCNT [26]. However, the fundamental
mechanisms of SWCNT tumorigenesis are unclear at
present.

Evolving research indicates that cancer stem cells (CSC)
are a potential driving force of tumor initiation and
progression due to their self-renewal and unlimited pro-
liferative capacity [27,28]. The existence of CSC was
reported in human cancers, including brain, breast,
bone marrow, prostrate, colon, and lung [29,30]. The
present study was undertaken to investigate whether
chronic SWCNT exposure can induce lung CSC, and
whether these cells possess tumorigenic activity. Our
data demonstrated for the first time that SWCNT can
interact with lung epithelial cells to induce CSC which
have the propensity to form tumor spheres, indicating
their neoplasticity and self-renewal capacity. Concurrent
studies have shown that a small subpopulation of cells
characterized as side population (SP) may be a source of
CSC [30,31]. Here, we report the presence of this distinct
SP subpopulation in chronic SWCNT-exposed lung cells
that is enriched with CSC and shows more aggressive
cancer phenotypes and tumor-initiating capability as
compared to non-SP (non-CSC). These CSC also exhibit
several stem cell phenotypes, including self-renewal and
regeneration, and express a high level of pluripotent stem
cell markers. Together, our study strengthens the earlier
finding on potential SWCNT carcinogenicity and unveils a
novel mechanism of SWCNT tumorigenesis toward the
path of acquiring CSC traits, which may be shared by
other engineered nanotubes and nanofibers.

Results

CNT characterization and dosage calculation

SWCNT were obtained from Carbon Nanotechnology
(CNI, Houston, Texas) and were purified by acid treat-
ment to remove metal contaminates. Elemental carbon
analysis by NIOSH Manual of Analytical Methods (NMAM
5040) and metal analysis by nitric acid dissolution and
inductive coupled plasma-atomic emission spectrometry
(ICP-AES) showed that the purified SWCNT contained
99% elemental carbon and less than 1% of contaminants.
The metal residues were mostly iron (Fe) at 0.23% by
weight. The Brunauer Emmet Teller (BET) surface area,
length (L), and width (W) of individual dry SWCNT
were 400-1040 m?/g, 0.1-1 um (L), and 0.8-1.2 nm (W)
(see Table 1 for summary). SWCNT were dispersed
by acetone/sonication method as previously described
[16,24,32]. The CNT doses used in the in vitro exposure
studies were calculated based on in vivo CNT exposure
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Table 1 Physicochemical properties of particles used in
this study

SWCNT Crocidolite asbestos
Manufacturer CNI NIEH, Kalahari Desert
Catalog reference Unidym™ CAS 12001-28-4
Synthesis HiPco Natural
Purification Acid treatment
BET surface area (m?/q) 400-1040 9.8
Dry mean length (L) (um) 0.1-1 210
Dry mean width (W) (nm) 0.8-1.2 10
% carbon (w/w) > 99%
% metal impurity (w/w)
Fe 0.23% 31.8%
SiO, - 50.9%
Other trace metals Not detectable 6.2%

data normalized to alveolar surface area in mice. For
example, the lowest dose which induced positive in vivo
biological response was 10 pg/mouse lung (0.5 mg/kg
body weight) [8,9]. Dividing this dose by the average
alveolar surface area in mice (~500 cm?) [33] indicates
the in vitro surface area dose of 0.02 pg/cm?, which is
equivalent to a human lung burden for 8 hours/day over
a month at 400 pg/m® (high CNT level reported in a
research facility) [34] or about 3 years at 10 ug/m?> (average
CNT level in U.S. facilities) [35].

Chronic SWCNT exposure induces CSC-like cells

Subconfluent cultures of human small airway epithelial
cells (SAEC) and bronchial BEAS-2B epithelial cells were
continuously exposed to a low-dose physiologically
relevant concentration of SWCNT at 0.02 pg/cm?® in
culture and passaged weekly for a period of 6 months.
The cells were cultured in normal medium without
SWCNT for at least ten passages prior to further exper-
iments. These chronic SWCNT-exposed cells were
previously shown by our group to possess irreversible
malignant transforming properties, altered cancer-related
canonical pathways, and tumor forming activity in mice
[24,25]. The ability to self-renew and generate different
differentiated progeny is fundamental properties of CSC.
A key characteristic of CSC is the formation of tumor
spheres in stem-cell selective condition of serum-free
media and non-adherence [31,36]. To first assess the
existence of CSC in SWCNT-transformed cells, chronic
SWCNT-exposed bronchial epithelial cells (designated
as BSW) and passage-matched control (BC) cells were
evaluated by the tumor sphere formation assay as well as
soft-agar colony formation assay which is the most strin-
gent indicator of malignant transformation [37]. Chronic
SWCNT-exposed BSW cells formed large (>50 um) col-
onies and tumor spheres, similarly to the positive control
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non-small cell lung cancer H460 cells, whereas the
passage control BC cells showed minimal number of
small colonies and spheres (Figure 1A and B), indicating
malignant transformation, neoplasticity, and self-renewal
property of SWCNT-exposed BSW cells, comparable to
lung cancer H460 cells.

Various adult stem cells and CSC derived from solid
tumors and cancer cell lines have been previously identi-
fied by an SP phenotype with enriched stem cell activity
[30,31,38]. A small subpopulation of SP cells is charac-
terized by their distinct low Hoechst 33342 dye staining,
attributable to their high expression of ABCG2 trans-
porter. To assess the SP phenotype of our cell systems,
malignant transformed BSW and lung cancer H460 cells
were stained with 5 pg/mL of Hoechst 33342 in the
presence or absence of 10 uM fumitremorgin C (FTC), a
specific inhibitor of ABCG2 transporter. SP cells, which
disappear in the presence of FTC, were identified and
calculated as a proportion of the pool population ran-
ging from approximately 15% in BSW and H460 cells to
less than 1% in the passage-control BC cells (Figure 1C
and E). To confirm the renewal or repopulation ability
of the identified CSC, we extracted the cells from
tumor spheres and SP subpopulation (designated as
first-generation cells) and cultured them for 3 weeks
under normal adherent conditions before they were
reanalyzed. The cells that were derived from the first-
generation of both BSW and H460 spheres and SP pre-
served the ability to form second-generation spheres
and SP (Figure 1D and E).

To validate the existence of CSC and SP phenotypes and
to rule out the potential effects of SV40 viral proteins as a
result of BEAS-2B immortalization, we performed analysis
of tumor spheres and SP in chronic SWCNT-exposed
small airway epithelial cells (designated as SASW) com-
pared with their passage-control (SAC) cells and positive
control asbestos-exposed (SAAB) cells. Consistent with
the earlier finding in BSW and H460 cells, SASW cells
demonstrated tumor spheres and SP fraction comparable
to SAAB cells that are greater than passage-control
SAC cells (Figure 2A-D), thus supporting the generality
of the observed CSC and SP phenotypes in SWCNT-
transformed lung cells independent of their SV40 status.
To our knowledge, this is the first demonstration of
the induction of CSC by chronic low-dose exposure to
SWCNT or any other nanomaterials.

Isolation and characterization of SWCNT-derived CSC cells
Flow cytometry-based fluorescence-activated cell sorting
(FACS) enables the isolation of SP from chronic SWCNT-
exposed cells and positive control lung cancer cells. SP
and non-SP (NSP) cell sorting profiles of malignant trans-
formed BSW and lung cancer H460 cells with more than
80% sorted purity are shown in Figure 3A. Sorted SP and
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Figure 1 Chronic exposure to SWCNT induces malignant transformation and CSC formation in bronchial epithelial cells. (A) Analysis of
colony formation (left) and tumor spheres (right) in passage control BC cells, chronic SWCNT-exposed BSW cells, and lung cancer H460 cells after
two weeks of culture. (B) Quantitative analysis of colony (top) and tumor spheres (bottom). (C) Analysis of side population (SP) in BC, BSW, and

H460 cells in the presence or absence of fumitremorgin ¢ (FTC) using FACS. SP cells (box) are determined by their disappearance in the presence

of FTC. (D, E) Analysis of second-generation tumor spheres (D) and SP (£). Data are mean + SD (n=4). *» < 0.05 vs. control BC cells.

NSP cells displayed different light-scattering properties
under flow cytometric analysis. Forward-scattered light
(FSC) measures mostly diffracted light and is proportional
to cell size, whereas side-scattered light (SSC) measures
mostly refracted light and is proportional to cell granular-
ity or content [39]. Sorted SP cells derived from both
BSW and H460 cells exhibited lower FSC and SSC com-
pared to NSP cells (Figure 3B), suggesting that SP cells are
smaller than NSP cells and have lower cytosolic content.
The average cell size of SP and NSP cells as measured
by Countess® automated cell counter was 13.40 + 0.7 vs.
16.05+0.90 pm in BSW-SP and NSP cells, and 13.03 +
043 vs. 14.55+1.06 um in H460-SP and NSP cells, re-
spectively. These results support the notion that sorted SP
and NSP cells are not identical in cellular morphology and
structure, and that SP and NSP cells may possess different

cellular behaviors. Due to the high dynamics of CSC that
are continuously undergoing cell differentiation in normal
culture conditions, cells were freshly isolated prior to each
experiment.

We next examined the neoplastic growth of SP and
NSP cells in soft agar cultures. Figure 3C shows that SP
cells derived from both malignant transformed BSW and
lung cancer H460 cells were proficient in colony forma-
tion, whereas NSP cells grew minimally. To further inves-
tigate whether SP cells are enriched with stem cell activity,
we cultured the sorted cells under stem cell-selective con-
ditions using tumor sphere formation assays. Figure 3D
shows that SP cells formed faster and larger tumor spheres
as compared to NSP cells, indicating the enrichment of
CSC phenotype in the SP fraction derived from BSW and
H460 cells. Having validated that SP cells possess CSC
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Figure 2 Chronic exposure to SWCNT induces malignant transformation and CSC formation in small airway epithelial cells. (A) Analysis
of colony formation (left) and tumor spheres (right) in passage control SAC cells, chronic SWCNT- and asbestos-exposed SASW and SAAB cells
after three weeks of culture. (B) Quantitative analysis of colony and tumor spheres. (C) Analysis of side population (SP) in SAC, SASW, and SAAB
cells in the presence or absence of fumitremorgin ¢ (FTC) using FACS. SP cells (box) are determined by their disappearance in the presence of
FTC. (D) Quantitative analysis of SP subpopulation. Data are mean + SD (n=4). *p < 0.05 vs. control SAC cells.
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properties, SP phenotype was subsequently used to iso-
late CSC cells from chronic SWCNT-exposed lung cells
and lung cancer cells.

Aggressive tumor phenotypes of SWCNT-derived CSC cells

CSC are known to contribute to the death resistance
and aggressive behavior of human cancer cells [40]. We
investigated the tumor-associated phenotypes of CNT-
derived CSC-like (SP) cells by first measuring their
acquired apoptosis resistance to chemotherapy, which
is a key characteristic of CSC [41]. Sorted SP and NSP
cells derived from malignant transformed BSW and
lung cancer H460 cells were treated with various che-
motherapeutic agents, including cisplatin, doxorubicin,
antimycin A and etoposide, and analyzed for apoptosis
by Hoechst 33342 assay at 24 hours post-treatment.
Cells having intensely condensed and/or fragmented
nuclei were considered apoptotic. Figure 4A demon-
strated the resistance of SP cells from both BSW and
H460 cells to all chemotherapeutic agents tested vs. their
matching NSP cells. We further compared their invasion
and migration activities, which are key determinants of

tumor progression [42] using Transwell® invasion (inserts
coated with Matrigel’) and migration (control inserts)
assays. The SP cells derived from malignant transformed
BSW and lung cancer H460 cells exhibited significantly
higher invasion and migration rates than those of the NSP
cells (Figure 4B). These results indicate the aggressive
tumor phenotype of CSC-like (SP) cells derived from
chronic SWCNT-exposed cells, comparable to that of
the SP cells derived from lung cancer H460 cells.

SWCNT-derived CSC cells induce tumor formation in vivo

To test whether the CSC-like (SP) fraction is enriched
with tumorigenic cells, the SP and NSP cells from ma-
lignant transformed BSW cells and lung cancer H460
cells were subcutaneously injected into NSG mice and
monitored for tumor development. At the injection
dose of 1x10° cells, tumor size (weight) and volume
were higher in the SP cells derived from H460 cells but
not from BSW cells (Table 2). No tumors were observed
in mice injected with passage-control BC cells. As the
number of cells is important in tumor initiation [30,31],
we performed serial dilution of SP and NSP cells derived
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Figure 3 Isolation and characterization of CSC-like cells from SWCNT-exposed lung epithelial cells. (A) SP and non-SP (NSP) FACS sorting
profiles of malignant transformed BSW and lung cancer H460 cells. Due to their highly dynamic nature of CSC, cells were freshly isolated prior to
each experiment. (B) Light scattering properties of SP (red) and NSP (blue) cells derived from BSW and H460 cells as evaluated by flow cytometry.
(C, D) Analysis of colony formation (C) and tumor spheres (D) in SP and NSP cells derived from BSW and H460 cells after two weeks of culture.

from malignant transformed BSW cells. As shown in
Table 2, the SP cells from BSW (BSW-SP cells) were able
to form tumors in mice with as little as 5 x 10° cells at
25-day latency period. Greater tumor incidence, size, and
volume were observed with SP cells than NSP cells at
these lower cell numbers. The growth kinetics of SP and
NSP tumors from H460 at 1 x 10° (Figure 5A) and BSW
at 5x10° (Figure 5B) further demonstrated the in-
creased degree of tumor formation of SP cells. Repre-
sentative SP and NSP tumors of BSW and H460 cells
are shown in Figure 5C and D. Histological analysis of
SP tumors from BSW showed classical cancer cell
morphology including the condensation of heterochro-
matin and the presence of multinucleated cells, an indi-
cator of mitotic dysfunction [43] (Figure 5F), similarly
to those obtained from H460 (Figure 5E). These results
demonstrate the tumorigenicity of SWCNT-induced

CSC-like (SP) cells and provide a mechanistic insight
into the role of CSC in SWCNT tumorigenesis.

Expression of putative stem cell markers in SWCNT-
derived CSC cells

CSC have phenotypic resemblance to normal stem cells.
We thus evaluated the possible correlation of putative
stem cell markers to CNT-derived CSC using human
stem cell protein arrays, which detect several putative
stem cell markers including Oct-3/4, Nanog, SOX2,
E-cadherein, a-fetoprotein, GATA-4, HNF-3p/FoxA2,
PDX-1/IPF1, SOX17, Otx2, TP63/TP73L, goosecoid, snail,
VEGF R2/KDR/FIk-1, and HCG. The result, which is
shown in Figure 6A and is confirmed by Western blot
analysis in Figure 6B, revealed the specific overexpres-
sion of Nanog, SOX2 and SOX17, and repression of
E-cadherin in SP cells as compared to NSP cells. As
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Figure 4 Aggressive tumor phenotypes of CSC-like cells derived from SWCNT-exposed lung epithelial cells. (A) Acquired apoptosis
resistance of SP cells derived from malignant transformed BSW and lung cancer H460 cells to chemotherapy cisplatin (100 puM), doxorubicin
(1 uM), antimycin A (30 uM), and etoposide (500 nM), compared to their respective non-SP (NSP) cells, as analyzed by Hoechst 33342 assay
at 24 hours post-treatment. (B) Cell invasion (top) and migration (bottom) assays of SP and NSP cells derived from BSW and H460 cells, and
the passage control BC cells, at 48 hours after incubation. Plots are relative invasion and migration level normalized to passage control BC
cells. Representative fluorescence micrographs of invading and migrating cells are shown (right). Data are means +SD (n=4). *p < 0.05 vs.
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Table 2 CSC-like (SP) cells are enriched with tumorigenic cells

Cell types Cell number Incidence Latency (day) Necropsy (day) Tumor

Volume (mm?) Weight (g)
H460
SP 1x10° 3/3 12 21 506+ 190 061£0.28
NSP 1x10° 3/3 14 21 202 +74 033+0.13
BSW
SP 1x10° 3/3 14 21 170+ 155 0.34£0.21
NSP 1%x10° 3/3 14 21 145+ 21 0.34+£0.24
BSW
SP 5x10° 2/2 18 28 34018 0.53£047
NSP 5%10* 172 - 28 140+ 199 020+0.28
BSW
SP 5x%10° 4/4 25 35 823 £ 556 1.04 £ 0.64
NSP 5% 10° 2/4 - 35 198 +376 043 £0.51
BC 1x10° 0/2 - - - -

Data are means +SD (n=2, 3 or 4).

putative stem cell markers typically determine self-
renewal efficiency and maintenance of stem cells, this
data strengthens the stem properties of CSC-like (SP)
cells in chronic SWCNT-exposed lung cell population.

Stem cell surface markers have provided powerful tools
in stem cell research, i.e., in isolation and characterization
of stem cell population and differentiation. As CSC are
known to be important in the initiation and progression of
cancers, stem cell markers induced by SWCNT might
potentially be used for risk assessment and early detection
of SWCNT carcinogenic potential. To identify the can-
didate CSC markers, SP and NSP cells from malignant
transformed BSW cells were analyzed for stem cell surface
markers CD24, CD44, and CD133 [44,45] in comparison
to their passage-control BC cells. A significant decrease in
CD24 expression was observed in SP and NSP cells as
compared to BC cells with the rank order of expression
being BC>NSP>SP (Figure 6C). In contrast, CD133
expression was highest in the SP cells followed by NSP
and BC cells (SP > NSP > BC) (Figure 6D). No significant
difference in CD44 level was observed in SP and NSP
cells, although the level is elevated in BC cells. The correl-
ation between CD24'°" and CD133"¢" and the tumori-
genic activity of SP cells suggests the potential utility of
these stem cell markers as candidate biomarkers for the
detection of SWCNT tumorigenesis.

Role of tumor suppressor p53 in SWCNT-derived CSC cells
We earlier reported that tumor suppressor p53 mediated
the acquired apoptosis resistance of chronic CNT-exposed
lung cells, which could be a potential mechanism under-
lying SWCNT tumorigenesis [24]. However, supporting
evidence is lacking. Malignant transformed BSW cells
were transfected with p53 or control GFP plasmid, then

subcutaneously injected into NSG mice and monitored for
tumor formation. At the injection dose of 1x 10° cells,
p53-overexpressing BSW cells showed a remarkably lower
incidence of tumor formation as compared to wild-type
cells (Figure 7A). To investigate whether p53 could pos-
sibly regulate SWCNT-derived CSC, p53-overexpressing
cells were evaluated for CSC features of tumor sphere
formation and SP subpopulation. Figure 7B shows that
p53 restored expression substantially inhibited tumor
spheres and SP, indicating the role of p53 in CSC regula-
tion. We further observed the inhibitory effect of p53 on
aggressive cancer phenotype, e.g. cell invasion and migra-
tion (Figure 7C). Importantly, p53-overexpressing cells
were shown to express CD24"€" and CD133'" stem cell
surface markers (Figure 7D). These results are in good
agreement with the observed lower fraction of CSC and
indicate the tumor suppressing activity of p53 in SWCNT
tumorigenesis in part through CSC inhibition.

Discussion

Lung cancer is the leading cause of cancer death, and
environmental and occupational exposure is the major
cause of most cases [46,47]. The objective of this study
was to address human lung cancer risks associated with
chronic pulmonary exposure to SWCNT through the
fundamental understanding of cellular and molecular pro-
cesses leading to carcinogenesis. Long-term exposure to
workplace-relevant doses of SWCNT, one of the major
forms of engineered CNT, were previously shown by our
group to induce irreversible malignant transformation and
alter cancer-related canonical pathways of lung epithelial
cells [24,25]. However, detailed understandings of the
pathological process are lacking. Accumulating evidence
suggests that various solid tumors including brain, breast,
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bone marrow, prostrate, colon, and lung contain a rare
population of CSC that have a high repopulation capacity
and are a major driving force of tumor initiation and pro-
gression [29,30,48]. Hence, identifying these CSC provides
a fundamental understanding of the carcinogenic process,
particularly at the early developmental stage. We investi-
gated whether chronic SWCNT exposure can induce lung
CSC and studied their role in tumorigenesis. SWCNT
were a focus of this study because they are generally more
toxic than MWCNT as indicated by their cytotoxicity
[49-51] and fibrogenicity [7,52]. Non-small cell lung can-
cer H460 cells were used in parallel and served as a posi-
tive control. Our results demonstrated for the first time
the existence of CSC subpopulation within all clones of
chronic SWCNT-exposed lung cells. These cells have the

propensity to form tumor spheres under serum-starved,
non-adherent conditions (Figures 1 and 2), similar to that
observed in non-small cell lung cancer cells and chronic
asbestos-exposed lung cells. We also demonstrated the
presence of side population (SP), the subpopulation found
in various solid tumors with stem cell properties, in the
SWCNT-transformed cells. The proportion of SP popu-
lation correlated well with the tumor sphere-forming
capability of CSC. These results suggest that SWCNT can
directly interact with lung epithelial cells to initiate CSC
formation.

To substantiate the functional role of CSC in SWCNT
tumorigenesis, we further characterized and isolated
SWCNT-transformed cells into two subgroups based on
their SP phenotype as CSC (SP) and non-CSC (non-SP
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or NSP). The SP phenotype was used because of their
demonstrated CSC properties and their reliability of iso-
lation by fluorescence-activated cell sorting (Figure 3).
Carcinogenesis involves several cellular processes that
contribute to the aggressive behaviors of cells including
abnormal growth, increased migration and invasion,
evasion of apoptosis, and angiogenesis [53,54]. CSC are
known to contribute to the aggressive behaviors of
human cancer cells [41,55]. SWCNT-derived CSC ac-
quired apoptosis-resistant and invasive phenotypes as
compared to non-CSC (Figure 4). Acquired apoptosis
resistance is a hallmark of cancer cells [53]. It promotes
cell survival during the carcinogenic process against

endogenous anti-growth signals and immune cell killing
mechanisms [56]. Whereas, increased cell migration
and invasion are crucial to metastasis and are key deter-
minants of tumor progression [42,57]. The results of
this study demonstrated the aggressiveness of SWCNT-
derived CSC and their ability to evade apoptosis, con-
sistent with the findings observed in CSC derived from
solid tumors.

CSC possess high tumorigenic potential [30,31,48]. We
found that SWCNT-derived CSC, when injected into
mice, have a high tumor-initiating capability as com-
pared to non-CSC (Figure 5). A small number of CSC
(e.g. 5x 10% cells) can induce tumors in mice, whereas
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non-CSC failed to form tumors in the majority of mice.
The presence of a small number of CSC in a large popu-
lation of non-CSC substantiated the role of CSC as
tumor-initiating cells. This is significant because the
early stage of carcinogenesis will most likely depend on
these tumor-initiating cells.

Our stem cell protein array studies indicate an aberrant
expression of several stem cell markers, notably Nanog,

SOX2, SOX17, and E-cadherin, in CNT-derived CSC
(Figure 6). Hyperactivation of Nanog has previously
been shown to promote CSC phenotypes in colon and
prostate cancer cells and confer their resistance to
apoptosis [58,59]. In breast cancer cells, SOX17 is dis-
tinctly upregulated in CSC-like (SP) cells in conjunction
with the activation of Wnt/B-catenin signaling pathway
[29]. The role of SOX2 in CSC was investigated by
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several studies. For example, SOX2 overexpression was
found to be critical in maintaining the antiapoptotic
activity and tumorigenicity of lung CSC, possibly through
the upregulation of oncogenes such as c-Myc, Wntl,
Wnt2, and Notchl [60,61]. Meanwhile, repression of
E-cadherin induces epithelial-mesenchymal transition
(EMT), the process that is known to involve CSC acqui-
sition in various cancers including lung cancer [62].
Altogether, our studies identify the stem properties of
SWCNT-derived CSC and suggest the potential mecha-
nisms that drive CSC acquisition in chronic SWCNT-
exposed lung cells.

Stem cell surface markers are powerful tool for
characterization and isolation of normal and cancer
stem cells. Having demonstrated that SWCNT-induced
CSC are crucial to tumor initiation (Figure 5), stem cell
surface markers induced by SWCNT could possibly be
used for risk assessment of SWCNT carcinogenicity
and early detection of SWCNT-induced tumorigenesis.
We analyzed surface expression of key biomarkers CD24,
CD44, and CD133 in CNT-derived CSC in comparison to
non-CSC and non-CNT-exposed control cells. Our results
showed the correlation between CD24'°" and CD133"e"
and the tumor-initiating capability of the cells (Figure 6).
CD24°% is often used in conjunction with CD44™e" to
identify CSC from breast tumors [63]. However, CNT-
derived CSC exhibited a low level of CD44 expression.
Our results are in good agreement with a previous report
showing CD24'°" and variable levels of CD44 ranging
from high to undetectable in lung CSC [62]. The role of
CD133, also known as AC133 or prominin-1, has been
reported in lung cancer. CD133-positive subpopulation
derived from lung cancer cell lines and patient-derived
primary tumors were shown to possess biological features
of CSC, including self-renewal and tumor-initiating cap-
abilities [64,65]. In addition, the clinical importance of
CD133 was recently shown to correlate with the patho-
logical stage and prognosis of NSCLC patients [45]. With
regards to its regulation, it was suggested that CD133 in-
duction was mediated through Oct3/4 and SOX2 under
the tumor microenvironment of hypoxia [66]. We also
observed a striking upregulation of SOX2 in SWCNT-
derived CSC (Figure 6), suggesting the possible mechan-
ism of CD133 induction in these cells.

Most human cancers have a tumor suppressor p53
inactivation [67]. Likewise, our results indicate an import-
ant role of p53 in SWCNT tumorigenesis. Chronic
SWCNT-exposed BSW cells showed a substantially lower
p53 level compared to their passage control cells. Restored
expression of p53 to BSW cells results in tumor inhibition,
which correlates well with the observed lower CSC frac-
tion (Figure 7). Such restored expression has profound
reversal effects on the aggressive cancer phenotypes and
stem cell surface markers. These results support the
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notion that p53 suppresses SWCNT tumorigenesis in
part through CSC inhibition and validate the findings
that stem cell markers CD24"°" and CD133™&" are
closely associated with SWCNT tumorigenesis.

In conclusion, we presented new evidence supporting
the role of CSC in SWCNT tumorigenesis. Chronic
exposure of human lung epithelial cells to SWCNT in-
duces CSC with stem properties including the ability to
self-renew and form tumor spheres in non-adhering
conditions. These cells also possess aggressive cancer
phenotypes and are tumorigenic in a mouse model. A
schematic summary of our findings is shown in Figure 8.
To our knowledge, this is the first demonstration of
CSC induced by SWCNT and its role in tumorigenesis.
This study supports the prudent adoption of prevention
strategies and implementation of exposure control for
SWCNT. Although the precise mechanisms underlying
CSC acquisition remain to be further elucidated, tumor
suppressor p53 in part plays a role. Furthermore, the
hyperactivation of Nanog, SOX2 and SOX17, as well as
the repression of E-cadherin seem to be involved. The
results of this study also suggest the potential utility of
stem cell surface markers CD24'™ and CD133"&" for
early detection of SWCNT tumorigenesis. The CSC
model and biomarkers described in this study may be
useful in other carcinogenesis studies.

Materials and methods

SWCNT characterization and preparation

SWCNT were obtained from Carbon Nanotechnology
(CNI, Houston, Texas) and were purified by acid treat-
ment to remove metal contaminates. Elemental carbon
analysis was performed by NIOSH Manual of Analytical
Methods (NMAM 5040), whereas trace metal analysis
was performed by nitric acid dissolution and inductive
coupled plasma-atomic emission spectrometry (ICP-AES,
NMAM 7300). The specific surface area was measured at
-196°C by the nitrogen absorption-desorption technique
(Brunauer Emmet Teller method, BET) using a SA3100
Surface Area and Pore Size Analyzer (Beckman Coulter,
Fullerton, CA). The diameter and length distribution of
the SWCNT were measured by field emission scanning
electron microscopy. SWCNT were dispersed by acetone/
sonication method [16,24,32] or by using Survanta®
as previously described [25]. For acetone/sonication
method, SWCNT were treated with acetone and placed
in an ultrasonic bath for 24 h. The dispersed SWCNT
were then filtered from the solution using a 20-um
nylon mesh screen followed by a 0.2-um polytetra-
fluoroethylene filter, which had been weighed prior to
use. After filter collection, the dispersed SWCNT were
washed thoroughly with distilled water, weighted, and
suspended in phosphate-buffered saline with 2—3 minute
sonication (Sonic Vibra Cell Sonicator, Sonic & Material
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biopersistence of SWCNT leads to their chronic interaction with lung

Inc, Newtown, CT, USA). For Survanta® dispersion, 1 mg
of SWCNT were dispersed in 1 mL of phosphate-buffer
saline (PBS) containing 150 pg/mL of Survanta® (Abbott
Laboratories, Abbott Park, IL) using light sonication
and were diluted in culture medium to obtain the de-
sired concentration.

Chemicals and reagents

Crocidolite asbestos (CAS# 12001-28-4) was obtained
from the National Institute of Environmental Health
Sciences (Research Triangle Park, NC). Hoechst 33342,
cis-diamminedichloroplatinum II (cisplatin), etoposide,
antimycin A, and antibody against -actin were obtained
from Sigma-Aldrich (St. Louis, MO). Doxorubicin was
obtained from EMD Biosciences (La Jolla, CA). Human
pluripotent stem cell array was obtained from R&D
Systems (Minneapolis, MN). Antibodies against Nanog,
E-cadherin, and peroxidase-labeled secondary antibody
were obtained from Cell Signaling Technology (Boston,
MA). Antibodies against SOX2 and SOX17 were obtained
from Millipore (Billerica, MA). Antibody against p53 was
obtained from Santa Cruz Biotechnology (Santa Cruz,
CA). Fluorochrome-conjugated antibodies against human

CD24, CD44, and CD133 were obtained from Miltenyi
Biotec (Auburn, CA).

Cell culture

Primary human small airway epithelial cells (SAECs) im-
mortalized with hTERT were kindly provided by Dr. Hei
(Columbia University, NY) [68]. SAECs were cultured in
SABM medium supplemented with Clonetics SAGM
SingleQuots (Lonza, Walkersville, MD) which contain
0.4% v/v bovine pituitary extract, 0.1% insulin, 0.1%
hydrocortisone, 0.1% retinoic acid, 1% bovine serum
albumin, 0.1% transferrin, 0.1% triiodothyronine, 0.1%
epinephrine, 0.1% human epidermal growth factor and
0.1% gentamicin. Human bronchial epithelial BEAS-2B
cells were obtained from American Type Culture Col-
lection (ATCC; Manassas, VA). They were cultured in
Dulbecco’s modified Eagle medium (DMEM) supple-
mented with 5% fetal bovine serum (FBS), 2 mM L-glutam-
ine, 100 units/mL penicillin and 100 pg/mL streptomycin.
Non-small lung cancer cell (NSCLC)-H460 cells were ob-
tained from American Type Culture Collection (Manassas,
VA) and were cultured in RPMI 1640 medium supple-
mented with 5% FBS, 2 mM L-glutamine, and 100 units/



Luanpitpong et al. Particle and Fibre Toxicology 2014, 11:22
http://www.particleandfibretoxicology.com/content/11/1/22

mL penicillin/streptomycin. All cells were maintained in a
humidified atmosphere of 5% CO, at 37°C.

Plasmid and transfection

p53 and control GFP plasmids were obtained from Invi-
trogen (Carlsbad, CA). Cells were transfected with p53
or GFP plasmid by nucleofection using Nucleofector®
(Amexa Biosystems, Cologne, Germany), according to
the manufacturer’s instructions. Briefly, cells were sus-
pended in 100 pL of nucleofection solution with 2 pg of
plasmid and nucleofected using the device program
T020. The cells were then resuspended in 500 pL of
complete medium and seeded in 60-mm cell culture
dishes. Cells were allowed to recover for 48 hours before
each experiment. The efficiency of transfection was de-
termined by using a green fluorescent protein reporter
plasmid and was found to be ~80%.

Chronic SWCNT exposure and derivation of
SWCNT-transformed cells

Lung epithelial BEAS-2B and SAEC cells were conti-
nuously exposed to low-dose SWCNT (surface area dose
of 0.02 pg/cm® or concentration dose of 0.1 pg/mL) in
culture for 6 months. The cells were passaged weekly at
preconfluent densities using a solution containing 0.05%
trypsin and 0.5 mM EDTA (Invitrogen, Carlsbad, CA).
SWCNT-exposed BEAS-2B cells were designated as BSW
cells, whereas SWCNT-exposed SAEC cells were desig-
nated as SASW cells. Parallel cultures grown in SWCNT-
free medium with the same background level of dispersant
provided passage-matched controls and were designated
as BC and SAC cells for the cells originated from BEAS-
2B and SAEC cells, respectively. After 6 months of expos-
ure, the cells were cultured in normal complete medium,
and their cancer and CSC phenotypes were assessed as
described below. Human non-small cell lung cancer H460
cells were used as a positive control in the studies.

Soft agar colony formation assay

Soft agar assay was performed as previously described
with minor modifications [69]. Passage-control BC and
SAC cells, and chronic SWCNT-exposed BASW and
SASW cells (3 x10* cells) were mixed with culture
medium containing 0.5% agar to a final agar concentration
of 0.33%. Cell suspensions were immediately plated onto
dishes coated with 0.5% agar in culture medium. Colonies
were examined under a light microscope after 2 weeks of
culture.

Tumor sphere assay

Tumor sphere assay was performed under non-adherent
and serum-free conditions as previously described as stem
cell-selective conditions [31,36]. Briefly, cells were resus-
pended in 0.8% methylcellulose (MC)-based serum-free
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medium (Stem Cell Technologies, Vancouver, Canada)
supplemented with 20 ng/mL epidermal growth factor
(BD Biosciences, San Jose, CA), basic fibroblast growth
factor and 4 mg/mL insulin (Sigma) and plated at 5 x 10>
cells (BC, BSW, and H460) or 1x10* cells (SAC and
SASW) in ultralow adherent 24-well plates (Corning,
Corning, NY). Cells were cultured for two or three weeks.
In order to assess the self-renewing property of cells,
spheres were collected by gentle centrifugation, dissoci-
ated into single cell suspensions, filtered and cultured
under conditions described above (second spheres).

Side population analysis and isolation

Cells were detached by trypsinization and 1 x 10° cells
were labeled with 5 pg/mL of Hoechst 33342 in DMEM-
F12 medium containing 2% FBS in the presence or absence
of 25 pM ABCG2 inhibitor fumitremorgin C (FTC; EMD
Biosciences, San Diego, CA) at 37°C for 90 minutes.
The cells were then centrifuged and resuspended in ice-
cold Hank’s buffer salt solution (HBSS). SP analysis and
sorting were performed using BD FACSAria fluorescence-
activating (flow cytometry)-based cell sorter (BD Biosci-
ences). The Hoechst dye was excited with a UV laser and
its fluorescence was measured with both a 450/20 filter
(Hoechst Blue) and 675 LP filter (Hoechst Red). SP frac-
tion was calculated based on the disappearance of SP
cells in the presence of FTC using the formula: SP per-
centage in the absence of FTC - SP percentage in the
presence of FTC.

Apoptosis assay

Apoptosis was determined by DNA condensation/frag-
mentation assay using Hoechst 33342 dye. Cells were in-
cubated with 10 pg/mL of Hoechst 33342 for 30 minutes
and visualized under a fluorescence microscope (Leica
Microsystems, Bannockburn, IL). Cells having intensely
condensed and/or fragmented nuclei were considered
apoptotic. Approximately 1000 nuclei from 10 random
fields were analyzed for each sample. The apoptotic
index was calculated as the percentage of cells with
apoptotic nuclei over total number of cells.

Cell migration and invasion assays

In vitro cell migration and invasion were determined using
a 24-well Transwell® unit with polycarbonate (PVDF) filters
(8-pm pore size). The membrane was coated with Matrigel’
(BD Biosciences, NJ) for the invasion assay, while control
inserts were used for the migration assay. Briefly, cells at
the density of 3 x 10* cells per well (invasion) or 1.5 x 10*
cells per well (migration) were seeded into the upper
chamber of the Transwell® unit in serum-free medium.
The lower chamber of the unit was filled with a normal
growth medium containing 5% FBS. Chambers were
incubated at 37°C in a 5% CO, atmosphere for 48 hours.
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The non-migrating or non-invading cells were removed
from the inside of the insert with a cotton swab. Cells
that migrated or invaded to the underside of the mem-
brane were fixed and stained with 10 pg/mL Hoechst
33342 for 30 minutes. Inserts were visualized and scored
under a fluorescence microscope (Leica DM, IL).

Xenograft mouse model

Animal care and experimental procedures described in
this study were performed in accordance with the
Guidelines for Animal Experiments at West Virginia
University with the approval of the Institutional Animal
Care and Use Committee (IACUC #12-0502). Immunode-
ficient NOD/SCID gamma mice, strain NOD.Cg-Prkdc*™
Iergtmlel/SZ] (NSG; Jackson Laboratory, Bar Harbor,
ME), were maintained under pathogen-free conditions
within the institutional animal facility. Food and tap water
were given ad libitum. Mice were subcutaneously injected
with 5x10°-1x10° sorted SP and NSP cells derived
from the transformed BSW, positive control H460 cells,
or passage-control BC cells suspended in 100 uL of Extra-
Cel® hydrogel (Advanced BioMatrix, San Diego, CA). Mice
were inspected daily for any signs of distress such as
weight loss, hunching, failure to groom, and red discharge
from the eyes. Tumor growth was monitored daily and
tumor size was measured at 21, 28 and 35 days post-
injection by using an external caliper (VWR International,
Batavia, IL). Tumor volume was calculated using the for-
mula: tumor volume [mm?®] = 1/2 (length [mm]) x (width
[mm]? ). At the end of experiments, mice were euthanized
and tumors were dissected and weighted.

Tumor histopathology

Tumor samples from each tumor were formalin-fixed
and paraffin-embedded. Tumor specimens were cut into
5-um sections and stained with hematoxylin and eosin
(H&E) to define the morphology and cellular structure
within the tumor region. All tissue sectioning and staining
were performed at the West Virginia University Pathology
Laboratory for Translational Medicine. The presence of
multinucleated cells and condensation of heterochromatin
(hematoxylin staining) were considered as cancer-specific
patterns.

Human stem cell array

The Proteome Profiler™ array of human pluripotent stem
cell array was commercially obtained from R&D Systems
(Minneapolis, MN) and was used according to the man-
ufacturer’s instruction. Briefly, a total of 150 pg of pro-
tein lysates were incubated overnight with nitrocellulose
membranes dotted with duplicate spots for 15 stem cell
markers and control antibodies. Bound proteins were
detected with horseradish peroxidase (HRP)-conjugated
antibodies using a chemiluminescence detection system
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(Amersham Biosciences, Piscataway, NJ) and quantified
using analyst/PC densitometry software.

Western blot analysis

After specific treatments, cells were incubated in lysis
buffer containing 20 mM Tris—HCI (pH 7.5), 1% Triton
X-100, 150 mM NaCl, 10% glycerol, 1 mM NazVO,,
50 mM NaF, 100 mM phenylmethylsulfonyl fluoride, and a
commercial protease inhibitor mixture (Roche Molecular
Biochemicals, Indianapolis, IN) at 4°C for 20 minutes.
The lysate was collected and determined for protein
content using the Bradford method (Bio-Rad Labora-
tories, Hercules, CA). Proteins (40 pg) were resolved
under denaturing conditions by 7.5-12% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred onto nitrocellulose membranes (Bio-Rad).
The transferred membranes were blocked for 1 hour in
5% nonfat dry milk in TBST (25 mM Tris—HCI, pH 74,
125 mM NaCl, 0.05% Tween 20) and incubated with the
appropriate primary antibodies at 4°C overnight. Mem-
branes were washed twice with TBST for 10 minutes and
incubated with HRP-coupled isotype-specific secondary
antibodies for 1 hour at room temperature. The immune
complexes were detected by an enhanced chemilumines-
cence detection system and quantified using analyst/PC
densitometry software.

Stem cell surface marker analysis

Cells were detached by trypsinization and 2 x 10° cells in
100 uL of FACS buffer were labeled with 10 pL of
fluorochrome-conjugated antibodies against CD24, CD44,
and CD133 (Miltenyi Biotec) in a dark refrigerator for
15 minutes. The cells were then washed, fixed in 2%
paraformaldehyde, and resuspended in FACS buffer for
analysis by flow cytometry.

Statistical analysis

The data represent means + SD from three or more in-
dependent experiments as indicated. Statistical analysis
was performed by Student’s t test at a significance level
of p <0.05.
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