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Abstract

Background: There is a great need for screening tools capable of rapidly assessing nanomaterial toxicity. One
impediment to the development of reliable in vitro screening methods is the need for accurate measures of cellular
dose. We present here a methodology that enables accurate determination of delivered to cell dose metrics. This
methodology includes (1) standardization of engineered nanomaterial (ENM) suspension preparation; (2) measurement
of ENM characteristics controlling delivery to cells in culture; and (3) calculation of delivered dose as a function of
exposure time using the ISDD model. The approach is validated against experimentally measured doses, and
simplified analytical expressions for the delivered dose (Relevant In Vitro Dose (RID)f function) are derived for 20
ENMs. These functions can be used by nanotoxicologists to accurately calculate the total mass (RIDM), surface area
(RIDSA), or particle number (RIDN) delivered to cells as a function of exposure time.

Results: The proposed methodology was used to derive the effective density, agglomerate diameter and RID functions
for 17 industrially-relevant metal and metal oxide ENMs, two carbonaceous nanoparticles, and non-agglomerating gold
nanospheres, for two well plate configurations (96 and 384 well plates). For agglomerating ENMs, the measured
effective density was on average 60% below the material density. We report great variability in delivered dose
metrics, with some materials depositing within 24 hours while others require over 100 hours for delivery to cells. A
neutron-activated tracer particle system was employed to validate the proposed in vitro dosimetry methodology
for a number of ENMs (measured delivered to cell dose within 9% of estimated).

Conclusions: Our findings confirm and extend experimental and computational evidence that agglomerate
characteristics affect the dose delivered to cells. Therefore measurement of these characteristics is critical for
effective use of in vitro systems for nanotoxicology. The mixed experimental/computational approach to cellular
dosimetry proposed and validated here can be used by nanotoxicologists to accurately calculate the delivered to
cell dose metrics for various ENMs and in vitro conditions as a function of exposure time. The RID functions and
characterization data for widely used ENMs presented here can together be used by experimentalists to design
and interpret toxicity studies.
Introduction
Growing evidence suggests human exposure to engineered
nanomaterials (ENMs) are inevitable [1,2] and may lead to
adverse health effects where exposures are high enough
[3-7], though the underlying toxicity mechanisms are not
currently well-understood [8,9]. There is therefore great
need for efficient and cost-effective toxicological screening
to keep apace of the rapidly growing array of ENMs enter-
ing the consumer market [10-14]. Given the high cost of
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animal testing, reliable high-throughput in vitro screening
methods are an attractive option for quickly and inex-
pensively characterizing the relationships between ENM
physicochemical properties including size, morphology,
surface chemistry, and crystallinity, and their biological
effects [12,13,15,16].
However, to date in vitro assays have produced con-

flicting results that often disagree with animal data
[6,10,17-19]. One impediment to the development of
reliable in vitro screening methods is the need for ac-
curate dosimetry [10,15-18]. Nanotoxicologists often
report in vitro exposure doses in terms of administered
mass or mass concentration, though scientific evidence
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continues to grow associating ENM toxicity with other
dose metrics such as chemical reactivity due to total
surface area or total particle number [16,20-22]. More
importantly, the use of administered or nominal concen-
trations of particles in these systems ignores important
processes (diffusion and sedimentation) that define their
fate and transport and the rate of delivery to cells. These
processes are strongly influenced by particle and media
characteristics.
In a typical in vitro cytotoxicity study, ENM powders

are usually suspended in liquid media for application to
cells. Once suspended in liquid, ENMs often form large
fractal agglomerates [23-26] thereby altering (1) the total
number of free particles, (2) the total surface area available
for biointeractions, and (3) the effective size and density of
the particles [24,27]. Nanoparticle agglomerates are por-
ous, containing media trapped during formation, with an
“effective density” which is less than the density of the pri-
mary particles [23,28,29]. DeLoid et al. recently reported
the broadest assessment to date, showing that the effective
density for many flame-generated fractal ENMs in culture
media was significantly lower than the material density
[24], Notably, in contrast to soluble chemicals as well as
their micron-sized counterparts, nanoparticle agglomer-
ates can settle and diffuse differentially according to their
hydrodynamic diameter and effective density, processes
that are expected to significantly affect the delivered cellu-
lar dose as a function of exposure time [23,29-33].
Until recently, this phenomena had been demonstrated

and quantified experimentally for a very limited number
of nanoparticles [30,33-35], although Cohen et al. con-
firmed the generalizability of these results to a much
broader group of materials by simulation [23]. For ex-
ample, for some commonly used ENMs such as SiO2

suspended in culture media (hydrodynamic diameter:
227 nm; effective density:1.147 g/cm3), Cohen et al. esti-
mated delivery of the entire administered dose to cells
in culture can take up to hundreds of hours, indicative
of the great importance of ENM interactions in physio-
logical fluid and their subsequent effect on particle de-
livery to cells [23,24]. More importantly, the lack of key
experimental methods for measuring the effective density
of agglomerates presented a major obstacle for consider-
ing in vitro dosimetry in nanotoxicology studies, a chal-
lenge recently overcome by our group [24].
The recently developed Harvard Volumetric Centrifuga-

tion Method (VCM) is a simple, user- friendly method
for experimentally determining the effective density of
agglomerates under the conditions of study for in vitro
systems. The accuracy of the VCM has been validated
by comparison to established, high accuracy, but more
costly and time consuming methods [24,27]. With the
advent of the Harvard VCM, consideration of accurate
dosimetry by in vitro nanotoxicologists in an fast and
cost effective manner is now possible. Coupled with
existing dosimetry algorithms such as the In vitro
Sedimentation, Diffusion and Dosimetry model (ISDD)
[23,27,29] particle and media properties along with the
measured effective density can be used to calculate the
number, mass and surface area of particles delivered to
cell dose as a function of exposure time. The new ap-
proach significantly improves the accuracy and validity
of high throughput in vitro toxicity screens currently
employed in nanotoxicology studies, which are based
on administered to cell dose [36,37]. It must be noted
that due to the many assumptions of spherical agglomer-
ates in the estimation of particle fate and transport via dif-
fusion and sedimentation, the mobility of high aspect ratio
materials may not be so easily estimated, and our group
is currently working to characterize the mobility of such
materials and determine whether the proposed approach
may be applicable.
We present here an integrated methodology for in vitro

particle dosimetry that takes into account the particoki-
netics in an in vitro system and enables accurate determin-
ation and reporting of delivered to cell dose metrics.
Simple mathematical equations, referred to as Relevant In
Vitro Dose (RID)f functions that represent the rate of de-
livery of each particle under the given experimental condi-
tions as a function of exposure time, are derived based on
the proposed methodology for twenty widely used ENMs
and are ready for use by toxicologists. The term “relevant”
here refers to the dose actually delivered to cells, rather
than the typically reported administered dose of particles
in suspension. The reported RIDf functions can be used by
in vitro nanotoxicologists to accurately calculate the par-
ticle mass (RIDM), particle surface area (RIDSA), or particle
number (RIDN) delivered to cells as a function of exposure
time.
Results and discussion
ENMs investigated
Seventeen metal oxide ENMs covering representative
oxides across the periodic table, two low aspect ratio
carbonaceous nanoparticles, and non-agglomerating gold
nanospheres typically used for biomedical applications
were selected for study. Several of the materials were syn-
thesized in house by flame spray pyrolysis (SiO2, CeO2,
Fe2O3, Fe3O4, and TiO2) using the Harvard VENGES gen-
eration system [7,38,39]. It is worth noting that flame gen-
erated ENMs represent an industry-relevant class of
materials which comprises 90% by volume of ENMs in the
market [40]. The remaining materials were purchased
from commercial sources, and their physico-chemical and
morphological properties have been previously reported in
great detail [37]. Primary particle size as determined by
BET or transmission electron microscopy (TEM) method
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for all ENMs is summarized in Table 1. In general, primary
particle sizes were in the range of 10-100 nm.

Characterization of ENM agglomerates in physiological
media
Hydrodynamic diameter measured by DLS for all ENMs
suspended at a concentration typically used for in vitro
study (50 μg/ml) in RPMI tissue culture media supple-
mented with 10% fetal bovine serum (RPMI/10%FBS) is
reported in Table 1. This data highlights the material spe-
cific effects on agglomerate size, and in general ENM
formed agglomerates that were below 500 nm in diameter.
This is in agreement with similar data reported in the lit-
erature for these ENMs and media conditions [23,24,37].
The measured agglomerate effective density for each

ENM suspended in RPMI media was determined by the
previously established Harvard Volumetric Centrifugation
Method (VCM), and are also summarized in Table 1 (see
Methods for details).
As expected, due to the fractal nature of flame-

generated metal oxide ENMs, these materials exhibited
effective density (ρEV) values significantly lower than
that of their material density (ρENM). This is a clear
Table 1 Delivered dose metrics

Material primary Primary particle
size (nm)

ρENM (g/cm3) ρEV (g

Al2O3 14.7 3.97 1

CeO2 18.3 7.22 1

CoO 71.8 6.44 2

Cr2O3 193 5.22 2

Fe2O3 12.3 5.25 1

Fe3O4 12 5.17 1

Gd2O3 43.8 7.41 1

Mn2O3 28.4 5.00 1

SiO2 13.5 2.65 1

TiO2 12.6 3.90 1

ZrO2 40.1 5.68 2

Printex (carbon black) 4.16 1.25 1

Carbon Nanohorns 20.3 1.25 1

VENGES SiO2 18.6 2.65 1

VENGES Fe2O3 27.6 5.245 1

VENGES CeO2-A 5.4 7.21 1

VENGES CeO2-B 27.9 7.21 1

VENGES CeO2-C 71.3 7.21 2

EVONIK SiO2 14 2.65 1

Au Nanospheres 20* 19.3 1

ρENM: material density (g/cm3); ρEV: agglomerate effective density (g/cm3); dH: hydro
delivery of 90% of administered dose (h), for each ENM-media-concentration-well p
of administered dose delivered to cells for any given exposure duration (see Equati
indication of the formation of porous agglomerates con-
taining large amounts of trapped intra-agglomerate
media. Non-agglomerating gold nanospheres exhibited
a ρEV value only slightly less than the density of elemen-
tal gold (17.73 vs 19.3 g/cm3), consistent with minimal
agglomeration, as expected. In general ρEV for all ENMs
investigated correlated with raw material density, which
may suggest that agglomerates of these ENMs are com-
posed of comparable relative proportions of raw ENM
and trapped media. For example, the lowest effective dens-
ities were measured for particles with the lowest material
densities (Carbon nanohorns ρEV = 1.022 g/cm3, ρENM =
1.25 g/cm3; Printex ρEV = 1.039 g/cm3, ρENM = 1.25 g/cm3;
VENGES SiO2 ρEV = 1.112 g/cm3, ρENM = 2.648 g/cm3),
and the highest effective densities were measured for par-
ticles with the material densities greater than 5 g/cm3

(ZrO2 ρEV = 2.528 g/cm3, ρENM = 5.68 g/cm3; CoO ρEV =
2.56 g/cm3, ρENM = 6.44 g/cm3; Au ρEV = 17.73 g/cm3,
ρENM = 19.3 g/cm3).
It is worth noting here that the reported values in this

study for agglomerate diameter and effective density
constitutes an extensive material property library reported
for the first time in the literature which can be used by
/cm3) dH (nm) 96 well plate 384 well plate

α (h−1) t90 (h) α (h−1) t90 (h)

.81 57 0.0213 108 0.0317 72.7

.43 416 0.116 19.8 0.166 13.9

.56 199 0.969 23.7 0.142 16.1

.21 358 0.246 9.37 0.343 6.71

.91 310 0.140 16.5 0.197 11.7

.46 274 0.0470 49.0 0.0751 30.7

.57 296 0.0730 31.5 0.112 20.6

.81 304 0.118 19.4 0.169 13.6

.30 40 0.0259 88.9 0.0406 56.7

.36 276 0.0366 62.9 0.0582 39.6

.53 226 0.124 18.5 0.177 13.0

.04 247 0.0126 183 0.0169 136

.02 261 0.0101 227 0.0139 166

.11 136 0.0138 166 0.0195 118

.52 380 0.117 19.6 0.167 13.8

.47 179 0.0288 80.0 0.0444 51.8

.62 181 0.0339 67.9 0.0525 43.8

.37 215 0.0991 23.2 0.145 15.9

.15 227 0.0203 113 0.0297 77.6

7.7 42.2 0.0747 30.8 0.117 19.7

dynamic diameter (nm); α: deposition fraction constant, (h−1); and t90: time for
late combination. Appropriate α can be used to accurately estimate the fraction
on 10).
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nanotoxicologists for dosimetry calculations for similar
material-media-concentration combinations.

Delivered to cell dose metrics
Great emphasis has been placed on determining the
most appropriate dose metric for in vitro toxicity, be it
mass, particle number, or surface area [21,32,41]. Im-
portantly, as shown above, ENMs in suspension can
form large agglomerates close to ten times their primary
particle diameter, thereby altering the total number of
free particles in suspension as well as the total surface
area available for biointeractions before they even reach
the cells cultured in vitro. Therefore, considerations of
particle number and surface area dose metrics should
take into account ENM transformations in liquid as
described below.
For an ENM suspension of known mass concentra-

tion, γ (μg/ml), the total mass dose, M (μg), can be cal-
culated as:

M ¼ γ � V ð1Þ
where V is the volume of exposure media (ml) applied
directly to the cells in culture.
The total particle number dose, N (#), can be calculated

from the total mass, M, hydrodynamic radius, rH (cm,
determined by DLS for ENMs in suspension), and agglom-
erate effective density, ρE, (g/cm

3), assuming spherical
agglomerates, as:

N ¼ M
4
3πr

3
H

� �� ρE
ð2Þ

Total surface area dose, SA (cm2), can then be calculated
assuming spherical agglomerates as:

SA ¼ 4πr2H
� �� N ð3Þ

It is worth noting that cellular response to a biologically
active material reflects the quantity of the substance ac-
tually coming into contact with the cells. For example,
Wittmaack recently reported significant correlation be-
tween in vitro toxicity of SiO2 nanoparticles and the
areal density of nanoparticle mass delivered to cells over
the exposure duration [41]. Sharma et al. report similar
findings for agglomerating iron oxide nanoparticles
[35]. Cellular toxicity in vitro is therefore more accur-
ately represented in relation to the delivered dose for
any selected dose metric, rather than the typically re-
ported administered mass concentration of ENMs in
suspension.

Deriving the Relevant In Vitro Dosimetry (RID) functions
Using the recently characterized material-media specific
parameters for agglomerate hydrodynamic diameter and
effective density (see Table 1) as inputs to any fate and
transport algorithms, the fraction of administered parti-
cles that would deposit onto cells as a function of time,
f(t), can be calculated. Alternatively, delivered doses to
cells and fractional deposition can be directly measured
as a function of time. In this study, the recently devel-
oped ISDD model was used to calculate the f(t) fractions
using effective agglomerate densities measured using the
Harvard VCM. It is worth noting that previous applica-
tions of ISDD were limited by the need to estimate ag-
glomerate effective density using the Sterling Equation
and assumptions about the fractal nature of the agglom-
erates. In addition to some uncertainty imposed by these
assumptions, differences between actual and simulated
doses can result [23,24,29]. Here we used the effective
density directly measured by VCM for our dosimetry
calculations.
The estimated f(t) function was then fitted as a Gompertz

sigmoidal function as previously described by the authors
[23] as follows:

f D tð Þ ¼ 1−e−αt ð4Þ
Where α (hrs−1) is the material-media specific depos-

ition fraction constant, and t (hr) is exposure duration.
The Relevant In Vitro Dose (RID)f functions for deliv-

ered mass, number and surface area as a function of time
can be derived by combining Equation 4 with Equations 1,
2 and 3 as follows:
For particle mass delivered to cells (RIDM, μg):

RIDM ¼ 1−e−αtð Þ �M ð5Þ
For particle number delivered to cells (RIDN, number

of particles).

RIDN ¼ 1−e−αtð Þ � N ð6Þ
For total particle surface area delivered to cells (RIDSA,

cm2),

RIDSA ¼ 1−e−αtð Þ � SA ð7Þ
While validated computational models such as the

ISDD model are readily available to nanotoxicologists to
perform accurate estimates for delivered dose as de-
scribed above, the RID functions presented here consti-
tute an inherent property of the ENM, media and well
plate in vitro system. RID functions derived for these
specific conditions can be used to easily and accurately
calculate delivered to cell dose metrics, as a function of
time, without the use of sophisticated fate and transport
numerical algorithms.
RID functions are provided here for all twenty ENMs

and conditions used in this study. The necessary param-
eter values, consisting of the deposition fraction constant
(α), agglomerate size (rH), and agglomerate effective dens-
ity (ρe) are reported in Table 1 for various ENMs and well
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plate geometries used in this study. However the afore-
mentioned methodology can be followed for any ENM,
media and plate configuration to derive the specific RID
function for any other material, media and geometry
condition.
Figure 1a provides a schematic map of the proposed

methodology to derive the RID functions for any ENM
and in vitro conditions.
It is necessary to note that for materials that undergo

significant dissolution over the course of the study,
changes in agglomerate diameter and effective density that
result from mass loss due to dissolution must be resolved
over time and addressed in the fate and transport algo-
rithm in order to accurately estimate delivered dose [24].
A recent dissolution study of 24 industrially relevant metal
oxide nanoparticles incubated in cell culture media over
24 hours reported that very few particles exhibit greater
than 10% mass loss due to dissolution (relatively highly
soluble materials: ZnO, CuO, WO3) [37]. To ensure
greatest accuracy for these materials, mass loss due to
dissolution, dH, and ρEV, should be measured over the
time of exposure. These time- resolved values should
then be utilized by the transport simulation model to
accurately estimate delivered dose. Considering mass
loss due to dissolution will likely result in a net decrease
in effective density, any dosimetry calculations for soluble
materials based on effective density measured immediately
after sample preparation would provide an overestimate of
particle deposition over time. In addition, for completion
of dosimetry calculations, both the particulate and soluble
components must be correctly identified and considered
separately as previously described [24]. The ISDD model
used here in its current form does not take into consider-
ation time resolved data for effective density and hydro-
dynamic diameter.

Experimental validation of the proposed integrated
in vitro dosimetry methodology
In order to validate the proposed methodology, suspen-
sions of two neutron-activated ENMs (CeO2, and SiO2

coated CeO2) were applied to transwell insert membranes
with 3 μm pores (Additional file 1: Figure S1) as described
in great detail in methods. Neutron activation of ENMs
has been used routinely in our lab for biokinetic and
in vitro studies of ENMs [42]. This is a well-established
method for accurately tracking the gamma emitting iso-
tope 141Ce with high sensitivity and correlates extremely
well with total particle mass [43]. Following 2, 4, and
24 hours incubation we measured the delivered dose by
gamma spectroscopy, defined as the sum of particles that
deposited on or passed through membrane. For both ma-
terials, less than 2% of the administered dose remained
stuck to the membrane suggesting easy passage of ENMs
through the 3 μm pores with minimum particle losses
(data not shown). Additionally, the delivered dose was es-
timated using the proposed in vitro dosimetry method-
ology presented here. As shown in Figure 2, there is a
close agreement between the measured delivered dose and
the estimated delivered dose for both materials at each
time point. This is a clear validation of the proposed dosi-
metric approach for ENMs.
It is worth noting that the dosimetry model (ISDD) used

in this study as the fate and transport algorithm in deriv-
ing the RID functions has been validated for a limited
number of materials including non-agglomerating fluores-
cently labeled polystyrene beads of various agglomerate
diameter [29,34], and for super paramagnetic iron oxide
particles [29], using only estimates of effective density.
The data presented here with the neutron activation tracer
particle approach extends that previous validation to two
additional flame-generated and industrially-relevant mate-
rials. Additionally, the validation reported here improves
upon major uncertainties of the previous work by employ-
ing direct measurements of agglomerate density by the
Harvard VCM for industry relevant materials.

Utility of the proposed RID functions to estimate in vitro
dosimetry of ENMs
The simple mathematical RID functions obtained here
for the extensive panel of ENMs can be used by nanotoxi-
cologists to accurately estimate the delivered to cell dose
metrics (mass, particle number, total surface) as a function
of time. The material and well geometry specific depos-
ition fraction constant, α (h−1), and the time required
to deliver 90% of the administered dose, t90 (h) for each
ENM-media-concentration system are summarized in
Table 1.

Impact of effective density and hydrodynamic diameter on
dosimetry
In general, ENMs having greater values for both effective
density and agglomerate diameter were expected to de-
posit more rapidly than those with smaller values for
both properties. For example, Cr2O3 exhibited the high-
est alpha parameter and shortest t90, consistent with its
relatively large agglomerate diameter and effective density
(dH = 358 nm, ρEV = 2.21 g/cm3, α = 0.343, t90 = 6.71 h for
a 384 well plate). In contrast, VENGES SiO2 exhibited a
low alpha parameter and long t90, consistent with its rela-
tively small agglomerate diameter and effective density
(dH = 136 nm, ρEV = 1.112 g/cm3, α = 0.0169, t90 = 118 h
for a 384 well plate). This trend is consistent with previ-
ous reports in the literature of measured target dose
in vitro [35].
Figure 3 presents the time required to deliver 90% of

the administered dose (t90), in hours (h), for all materials
investigated, in two well plate geometries (96 and 384
well plate). These results confirm and significantly



Figure 1 Schematic Map for proposed integrated In Vitro Dosimetry Methodology. a, Proper dispersion preparation requires selection of
appropriate sonication media (such as DI H2O for metal oxide ENMs), and sonication above the critical sonication energy required to break ENMs
down to the smallest possible agglomerates that are stable over time. Characterization of dispersion characteristics including agglomerate
diameter and agglomerate effective density allow for accurate modeling of particokinetics in vitro, and determination of delivered dose metrics
and the deposition fraction constant. b, Relevant In Vitro Dose functions (RIDf) provide a simplified tool for nanotoxicologists to quickly estimate
delivered dose values for the ENMs investigated in this manuscript. Selection of the appropriate deposition fraction constant (α, listed in Table 1),
allows nanotoxicologists to directly calculate relevant in vitro doses (RID) for any exposure duration, including delivered ENM mass (RIDM, μg),
delivered particle number (RIDN, #), and delivered surface area (RIDSA, cm

2), using the equations listed below. t is exposure duration (h), γ is ENM
mass concentration (μg/ml), V is media volume applied to cells (ml), rh is hydrodynamic radius (cm, listed in Table 1), and ρE is agglomerate
effective density (g/cm3, listed in Table 1).
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extend evidence that that the dose rates and target cell
doses can vary significantly depending on the material,
media, and well plate properties, and emphasize the
importance of characterizing ENM-suspensions for both
agglomerate diameter and effective density. For the ma-
terials investigated in this study, the time required to



Figure 2 Validation of dosimetry methodology for two metal oxide ENMs. a. Validation of dosimetry approach for CeO2 (dXRD=28.4 nm)
suspended in DMEM; b. Validation of dosimetry approach for SiO2 coated CeO2 (dXRD=28.4 nm) suspended in DMEM. All experiments were done
in triplicate, error bars represent standard deviation.

Cohen et al. Particle and Fibre Toxicology 2014, 11:20 Page 7 of 12
http://www.particleandfibretoxicology.com/content/11/1/20
deliver particles to cells in vitro can differ by a factor of
20, and can range from <10 hours up to >100 hours
(Figure 3). Consideration of the variability of delivered
dose may hold large implications for the interpretation
of previously reported high-throughput toxicity screens
of large panels of ENMs [36,37].
Differences in delivered dose values provide a major

challenge for comparisons of the dose–response curves
between materials exhibiting fast transport (via sedimen-
tation or diffusion), and materials exhibiting slow trans-
port that achieve significantly lower delivered doses
in vitro. These challenges can be partially addressed by
reporting delivered doses directly measured in vitro, deliv-
ered doses estimated following our described methodology
and the Harvard VCM, or delivered doses based on the
Figure 3 Comparison of time required to deliver 90% of the administ
dosimetry methodology, for all materials investigated in two well pla
reported RID functions reported in Table 1, rather than
using the administered dose metric previously used in the
study.

Future work
It is necessary to note that the reported dosimetry data for
all ENMs was estimated based on agglomerate size and
density measured immediately following sample prepar-
ation, assuming no agglomerate changes over time due
to dissolution. The dissolution of a large panel of metal
and metal oxide ENMs (many of which are included in
this study) suspended in cell culture media following
24 hour incubation has been previously reported [37],
and only two materials exhibit ≥10% dissolution (ZnO,
and CuO). For partially soluble materials that may produce
ered dose (t90) in hours (h), calculated following the described
te configurations.
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suspensions in which agglomerate size and effective dens-
ity change over time, these properties must be resolved
over time and the time-resolved values included in the fate
and transport algorithm (e.g. ISDD), in order to accurately
estimate delivered dose.
One potential limitation to the proposed dosimetry ap-

proach is the lack of validation for high aspect ratio
nanomaterials such as carbon nanotubes. Considering
the many assumptions of spherical agglomerates in the
estimation of particle fate and transport via diffusion
and sedimentation, the mobility of high aspect ratio ma-
terials may not be so easily estimated. Carbon nanotubes
can form large irregularly shaped agglomerates in liquid
suspension, the mobility of which may in fact be accur-
ately estimated from the agglomerate diameter and effect-
ive density. Our group is currently working to characterize
the mobility of such materials and determine whether the
proposed approach may be applicable.
It must also be noted that agglomerate diameter may

be greatly influenced by the mass concentration of parti-
cles in solution. The RID functions derived in this study
were generally valid for a mass concentration range of 0-
50 μg/ml (data not shown), which is within the usual
levels used for in vitro studies [6,39]. Concentration-
dependent effects on ENM agglomeration state occur
for some of the tested ENMs at concentrations greater
than 50 μg/ml (data not shown), and for concentrations
higher than this range, the proposed methodology needs
to be applied in order to derive revised RID functions
based on effective density and agglomerate size for those
high concentration levels. Further investigations into the
influence of particle concentration on agglomeration state
are forthcoming.
The protein corona is another important factor influ-

encing nanoparticle agglomeration, particle delivery to
cells, and cellular uptake and trafficking [44-46]. Our
group recently reported that the presence and concentra-
tion of proteins in the suspension media can influence
formed agglomerate size and stability over time [23]. This
topic was also investigated utilizing atomic force micros-
copy techniques to determine the influence of proteins on
agglomeration potential and particle-particle interactions
in liquid suspension [47]. Future-work characterizing
ENM-protein interactions and the implications for ag-
glomerate parameters and cellular toxicity are neces-
sary for the field of in vitro nanotoxicology.
Examples from the recent literature demonstrate the

significant impact of dosimetry on interpreting the re-
sults of various in vitro assays. These principles were
first described in detail several years ago [23,29,31], and
are consistent with basic principles of pharmacology and
toxicology as well as the gold standard practice for chem-
ical risk assessment. More recently, our group reported on
the impact of particle settling on interpreting the relative
abilities of various flame-generated nanomaterials to
translocate across alveolar epithelial monolayers in vitro
[42]. Furthermore, with regards to hazard ranking large
panels of ENMs, a recent investigation into the toxicity
of low aspect ratio ENMs reported ratios of slopes for
delivered dose vs administered dose varying between
1.02 and 5.58, with the rank order of ENMs shifting not-
ably for some ENMs when delivered dose was taken
into account (Pal et al., submitted 2014). Furthermore,
the development of reliable in vitro screening assays re-
quires identification of equivalent doses between in vitro
and in vivo systems. One proposed approach was recently
reported that utilized the multiple-path particle dosimetry
model (MPPD) to estimate the deposited and retained
dose of ENMs in the alveolar regions of exposed animals.
These doses were then compared with cellular responses
measured at equivalent doses of ENMs delivered to cells
in vitro [6,48, Teeguarden et al., submitted 2014]. Future
studies are necessary to further determine the impact of
dosimetry on the hazard ranking of large panels of ENMs
in both cellular and whole animal systems, though prelim-
inary results suggest particle delivery to cells plays a sig-
nificant role in nano-bio interactions in vitro and affect
hazard ranking for some ENMs and endpoints. More im-
portantly, there is consensus in the nanotoxicology field
that there is a need to bridge the gap between in vitro and
in vivo models, which requires reporting of biological
response data in vitro and in vivo on the same dose scale-
the amount of material deposited to cells/tissue, rather
than the administered mass dose metric currently used
in nanotoxicology studies. The proposed dosimetric
approach can be a valuable and easy to use tool for nano-
toxicologists in their quest of understanding the toxico-
logical implications of ENMs.
Direct measurement of the internalized cellular dose is

another dose metric worth investigating to further eluci-
date the mechanisms of nanomaterial toxicity in vitro.
Our group recently demonstrated for a small panel of neu-
tron activated ENMs that particle uptake and trafficking is
dependent on particle delivery to cells, and provided
electron micrographs and DLS data characterizing the
agglomeration state of internalized and exocytosed parti-
cles [42]. Future work is necessary to characterize cellular
internalization of ENMs in vitro, and it will be useful to
compare the dose response curves based on administered,
delivered, and internalized doses.

Conclusions
Our integrated in vitro dosimetry methodology and the
derived RID functions provide a tool for nanotoxicolo-
gists to accurately calculate the particle mass (RIDM),
particle surface area (RIDSA), or particle number (RIDN)
delivered to cells in culture as a function of exposure
time. This methodology is based on direct measurement
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of agglomerate parameters, and is an improvement upon
previous work relying on unvalidated estimates for ag-
glomerate effective density [29]. Numerical calculations
for particle deposition over time have been validated ex-
perimentally for a variety of materials and conditions,
highlighting the accuracy and wide applicability of this
method to industrially-relevant ENMs. Furthermore, the
RID functions presented here for 20 ENMs in a variety
of in vitro conditions can assist nanotoxicologists in ad-
dressing dosimetry issues in their in vitro screening
studies. Adoption of the proposed dosimetry method-
ology will be a major step towards the development of
inexpensive, accurate, and reproducible in vitro screen-
ing assays, and will overcome potential inaccuracies that
may arise from reporting dose as simply the nominal
media concentrations. Consideration of the variability of
delivered dose may hold large implications for the inter-
pretation of previously reported high-throughput toxicity
screens of large panels of ENMs [36,37], and will be a
major advancement for nano-environmental health and
safety research in the future.

Materials and methods
Nanomaterials and characterization
ENMs investigated are listed in Table 1. SiO2, Fe2O3, and
CeO2 ENM powders were generated in-house by flame
spray pyrolysis using the Harvard Versatile Engineered
Nanomaterial Generation System (VENGES) recently
developed by the authors [7,38]. Additional metal oxide
ENM powders were purchased from commercial ven-
dors (SiO2 and TiO2: EVONIK, Essen, Germany; Al2O3,
Cr2O3, Fe2O3, Mn2O3, and Zr2O3: US Research Nanoa-
terials Inc., Houston, TX; CoO: Skyspring Nanomaterials
Inc., Houston, TX; Gd2O3 and SiO2: Nanostructured and
Amorphous Materials Inc., Houston, TX; CeO2: Meliorum
Technologies Inc., Rochester, NY). Carbon nanohorns
and Printex-90 carbon black particles were donated by
Dr. Dhimiter Bellow at University of Massachussetts Lowell,
and characterized previously in the literature [49,50].
Spherical monodisperse gold nanospheres, which were

donated by Dr. Srinivas Sridhar at Northeastern University,
were prepared in suspension as previously described [51].
Briefly, 500 ml of 1 mM HAuCl4 in a round bottom flask
was heated to a rolling boil with vigorous stirring. 50 ml of
38.8 mM sodium citrate solution was added rapidly. After
a color change from pale yellow to purple, indicating
formation of gold nanoparticles, boiling was continued
for another 15 minutes, after which the heating source
was removed and the suspension stirred for an add-
itional 15 minutes. The suspension was filtered through
0.45 μm syringe filters and stored at 4°C.
For powdered ENMs specific surface area, SSA, defined

as the particle surface area per mass (m2/g), was deter-
mined by the nitrogen adsorption/Brunauer-Emmett-Teller
(BET) method using a Micrometrics Tristar 3000 (Micro-
metrics, Inc., Norcross, GA, USA) for each ENM. The
equivalent primary particle diameter, dBET, was calculated,
assuming spherical particles, as

dBET ¼ 6
SSA� ρP

; ð8Þ

where ρp is the particle density, which was obtained for
each particle from the densities of component materials,
at 20°C, reported in the CRC handbook of Chemistry
and Physics [52]. ENM powder primary particle morph-
ology and size were further characterized, and for mono-
disperse gold nanospheres primary particle diameter was
estimated by transmission electron microscopy (TEM)
using a Zeiss Libra 120 microscope (Carl Zeiss GmbH,
Jena, Germany).

ENM dispersal and characterization in suspension
The material specific delivered sonication energy required
to achieve stable monodisperse agglomerates in suspen-
sion (DSECR) was determined following a previously estab-
lished protocol [23,37]. In brief, ENMs were dispersed in
deionized water at 5 mg/ml by probe sonication, calori-
metric calibrated whereby the power delivered to the
sample was determined to be 3 W. Suspensions are
then characterized for hydrodynamic diameter (nm),
polydispersity, zeta potential (mV), and specific con-
ductance (mS/cm) by dynamic light scattering (DLS) using
a Dynapro Plate Reader (Wyatt Technology) and Zeta-
PALS instrument (Zeta Potential Analyzer, Brookhaven
Instruments Corporation, Holtsville, NY). Plots of hydro-
dynamic diameter as a function of DSE exhibiting asymp-
totic de-agglomeration trends are derived for each ENM
and used to determine the material-specific DSECR, corre-
sponding to the lowest agglomeration state. From each
curve, an ENM-specific DSECR is estimated by determin-
ing the DSE value at which the dispersed ENMs were
within 10% of their observed minimum hydrodynamic
diameter as measured by DLS. To determine the stability
of the sonicated suspension over time, hydrodynamic
diameter measurements were repeated for several hours
following sonication.

Effective density by volumetric centrifugation method
(VCM)
One ml samples of 100 μg/ml suspensions of metal oxide
ENMs were dispensed into TPP packed cell volume
(PCV) tubes (Techno Plastic Products, Trasadingen,
Switzerland) and centrifuged at 2,000 × g for one hour.
Agglomerate pellet volumes,Vpellet, were measured using a
slide rule-like easy-measure device also obtained from the
PCV tube manufacturer. Effective agglomerate densities
were calculated from Vpellet values of triplicate samples for
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each ENM and condition as described previously [24].
Media density was calculated from the mass of a 50 ml
sample by subtracting the weight of a 50 ml volumetric
flask from the weight of the same flask containing 50 ml
of media (RPMI supplemented with 10% fetal bovine
serum, RPMI/10%FBS) at 20°C, and the theoretical stack-
ing factor (SF) of 0.634 based on stacking of irregular
spheres was used for all materials [53].

Delivered dose computation
The in vitro sedimentation, diffusion and dosimetry
(ISDD) model developed by Hinderliter et al. [29], was
used to calculate the fraction of administered particles
deposited standard 96- and 384-well plates as a function
of time fD(t) as previously described [23,24]. In addition
to effective density, ISDD model inputs included the
hydrodynamic diameter, dH, measured by DLS in the test
media, at 50 μg/ml, the media column height (3.16 mm
for 100 μl exposure media in 96 well plates, 2.27 for
25 μl exposure media in 384 well plates), temperature
(310 K), media density, (1.00 g/cm3), media dynamic viscos-
ity (0.00074 Pa s) [29], and administered (initial suspen-
sion) particle concentrations of 50 μg/ml. For each ENM
the model-derived fD (t) was fit to a Gompertz sigmoidal
equation,

f D tð Þ ¼ 1−e−αt ; ð9Þ

where t is time (h), and α is an ENM- and media-specific
deposition fraction constant (h−1). Solving Equation (9)
for the time t at which the fraction fD(t) of administered
particles is delivered yields

t ¼ −
ln 1‐f D tð Þð Þ

α
: ð10Þ

Equation (10) was used to calculate the time required
for delivery of 90% of the administered dose, t90, for each
ENM dispersion using the specific deposition function
constants, α, and an fD(t) value of 0.90.

Validation of proposed dosimetry methodology using
neutron activated ENMs
ENM powders were irradiated with neutrons for up to
24 hours at the Nuclear Reactor Laboratory (Massachusetts
Institute of Technology, Cambridge, MA), and the radio-
active 141Ce ENMs (CeO2, SiO2-coated CeO2) were stored
in irradiation tubes. 141Ce is a gamma emitter with a half-
life of 32 days, and the successful production of radioactive
ENMs following irradiation was confirmed by gamma en-
ergy spectrometry using a Packard gamma counter (Cobra
Quantum, Packard Instrument, IL). ENMs were quantified
as either percentage of total administered mass dose, based
on total measured radioactivity (counts per minute, CPM).
Concentration calibrations were performed for each ENM
by measuring radioactivity for a measured and known total
ENM mass in suspension, and measuring radioactivity of
dilutions by half down to 5 ng.
100 μl of ENM suspensions at a concentration of

12.5 μg/ml were applied to transwells without cells, for
2, 4, and 24 hours (see Additional file 1: Figure S1). Fol-
lowing exposure, all supernatant and transwell inserts
were collected from culture plates and set aside for ana-
lysis by gamma spectroscopy. Supernatants were collected
from the transwell, and transwell inserts were set aside for
measurement by gamma spectroscopy. All liquid present
in the basolateral compartment of the transwell was then
collected, and each basal well was washed 3 times with
PBS and collected. Gamma counts were measured for
apical compartments (including supernatant and the
transwell insert), as well as for the basal compartment
(including collected media and PBS wash) by gamma
spectroscopy. A mass balance of ENMs measured in the
apical and basal compartments was compared to gamma
readings for ENM suspensions of equivalent total particle
mass (1.25 μg) to confirm minimal particle loss. All exper-
iments were conducted in triplicate.

Additional file

Additional file 1: Figure S1. Experimental setup for dosimetry
methodology validation experiments.
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